6 resultados para Bladder pain syndrome
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The Overactive Bladder (OAB) and Bladder Pain Syndrome (BPS) are debilitating disorders for which the pathophysiological mechanisms are poorly understood. Injury or dysfunction of the protective urothelial barrier layer, specifically the proteoglycan composition and number, has been proposed as the primary pathological characteristic of BPS. For OAB, the myogenic theory with dysfunction of the muscarinic receptors is the most reiterated hypothesis. For both over activity of the inflammatory response has been posited to play a major role in these diseases. We hypothesise that BPS and OAB are peripheral sensory disorders, with an increase in inflammatory mediators, such as cytokines and chemokines, which are capable of activating, either directly or indirectly, sensory nerve activity causing the disease. The aim of the PhD is to identify potential new therapeutic targets for the treatment of BPS and OAB. We used medium throughput quantitative gene expression analysis of 96 inflammation associated mediators to measure gene expression levels in BPS and OAB bladder biopsies and compared them to control samples. Then we created a novel animal model of disease by specific proteoglycan deglycosylation of the bladder mucosal barrier, using the bacterial enzymes Chondroitinase ABC and Heparanase III. These enzymes specifically remove the glycosaminoglycan side chains from the urothelial proteoglycan molecules. We tested role of the identified mediators in this animal model. In addition, in order to determine on which patients peripheral treatment strategies may work, we assessed the effect of local anaesthetics on patients with bladder pain. Gene expression analysis did not reveal a difference in inflammatory genes in the OAB versus control biopsies. However, several genes were upregulated in BPS versus control samples, from which two genes, FGF7 and CLL21 were correlated with patient clinical phenotypes for ICS/PI symptom and problem indices respectively. In order to determine which patients are likely to respond to treatment, we sought to characterise the bladder pain in BPS patients. Using urodynamics and local anaesthetics, we differentiated patients with peripherally mediated pain and patients with central sensitisation of their pain. Finally to determine the role of these mediators in bladder pain, we created an animal model of disease, which specifically replicates the human pathology: namely disruption in the barrier proteoglycan molecules. CCL21 led to an increase in painrelated behaviour, while FGF7 attenuated this behaviour, as measured by cystometry, spinal c-fos expression and mechanical withdrawal threshold examination. In conclusion, we have identified CCL21 and FGF7 as potential targets for the treatment of BPS. Manipulation of these ligands or their receptors may prove to be valuable previously unexploited targets for the treatment of BPS.
Resumo:
Visceral pain is a debilitating symptom of irritable bowel syndrome (IBS), a disorder affecting up to 30% of adults. A better understanding of the mechanisms underlying visceral hypersensitivity may facilitate development of more targeted therapies, improving the quality of life of these individuals. The studies performed in this thesis were designed to investigate important factors of visceral pain, including early-life manipulations, genetic predisposition and sex hormones. Maternal separation (MS) consistently reproduces visceral hypersensitivity and altered anxiety-like behaviours in rats, symptoms associated with IBS. It has been found that 5-HT2B receptor antagonism blocks visceral pain but no difference in relative 5-HT2B receptor mRNA expression was found in hippocampus, amygdala and colon. The neuronal activation patterns of prefrontal cortex and amygdala of MS rats were then investigated. MS animals are characterised by differential activation of the prefrontal cortex (anterior cingulate cortex (ACC), infralibic cortex, prelimbic cortex) as well as the central nucleus of the amygdala (CeA). Genetic factors also contribute to pain syndromes such as IBS. We utilised the Wistar Kyoto (WKY) rat, a stress-sensitive strain, as an animal model of brain-gut axis dysfunction. WKY rats have a lower expression of the glutamate transporter EAAT2 and mGlu4 receptor in the ACC. Another early-life factor that can increase susceptibility to functional gastrointestinal symptoms later life is disruption of the gut microbiota, thus early-life antibiotic treatment was used to assess this effect. Antibiotic treatment induced visceral hypersensitivity in adulthood and may be related to observed reductions in spinal cord alpha-2A adrenoreceptor (adra2A) mRNA. Lastly, we investigated sex differences in visceral sensitivity. EAAT1 & 2 mRNA levels are lower in females, potentially increasing glutamatergic concentration at the symaptic level. Moreover, NR1 and NR2B subunits mRNA of NMDA receptor were increased in caudal ACC of females. These findings may account for sex differences in visceral sensitivity.
Resumo:
Background: Irritable bowel syndrome (IBS) is a common disorder that affects 10–15% of the population. Although characterised by a lack of reliable biological markers, the disease state is increasingly viewed as a disorder of the brain-gut axis. In particular, accumulating evidence points to the involvement of both the central and peripheral serotonergic systems in disease symptomatology. Furthermore, altered tryptophan metabolism and indoleamine 2,3-dioxygenase (IDO) activity are hallmarks of many stress-related disorders. The kynurenine pathway of tryptophan degradation may serve to link these findings to the low level immune activation recently described in IBS. In this study, we investigated tryptophan degradation in a male IBS cohort (n = 10) and control subjects (n = 26). Methods: Plasma samples were obtained from patients and healthy controls. Tryptophan and its metabolites were measured by high performance liquid chromatography (HPLC) and neopterin, a sensitive marker of immune activation, was measured using a commercially available ELISA assay. Results: Both kynurenine levels and the kynurenine:tryptophan ratio were significantly increased in the IBS cohort compared with healthy controls. Neopterin was also increased in the IBS subjects and the concentration of the neuroprotective metabolite kynurenic acid was decreased, as was the kynurenic acid:kynurenine ratio. Conclusion: These findings suggest that the activity of IDO, the immunoresponsive enzyme which is responsible for the degradation of tryptophan along this pathway, is enhanced in IBS patients relative to controls. This study provides novel evidence for an immune-mediated degradation of tryptophan in a male IBS population and identifies the kynurenine pathway as a potential source of biomarkers in this debilitating condition.
Resumo:
Restless Legs Syndrome (RLS) is a common neurological disorder affecting nearly 15% of the general population. Ironically, RLS can be described as the most common condition one has never heard of. It is usually characterised by uncomfortable, unpleasant sensations in the lower limbs inducing an uncontrollable desire to move the legs. RLS exhibits a circadian pattern with symptoms present predominantly in the evening or at night, thus leading to sleep disruption and daytime somnolence. RLS is generally classified into primary (idiopathic) and secondary (symptomatic) forms. Primary RLS includes sporadic and familial cases of which the age of onset is usually less than 45 years and progresses slowly with a female to male ratio of 2:1. Secondary forms often occur as a complication of another health condition, such as iron deficiency or thyroid dysfunction. The age of onset is usually over 45 years, with an equal male to female ratio and more rapid progression. Ekbom described the familial component of the disorder in 1945 and since then many studies have been published on the familial forms of the disorder. Molecular genetic studies have so far identified ten loci (5q, 12q, 14p, 9p, 20p, 16p, 19p, 4q, 17p). No specific gene within these loci has been identified thus far. Association mapping has highlighted a further five areas of interest. RLS6 has been found to be associated with SNPs in the BTBD9 gene. Four other variants were found within intronic and intergenic regions of MEIS1, MAP2K5/LBXCOR1, PTPRD and NOS1. The pathophysiology of RLS is complex and remains to be fully elucidated. Conditions associated with secondary RLS, such as pregnancy or end-stage renal disease, are characterised by iron deficiency, which suggests that disturbed iron homeostasis plays a role. Dopaminergic dysfunction in subcortical systems also appears to play a central role. An ongoing study within the Department of Pathology (University College Cork) is investigating the genetic characteristics of RLS in Irish families. A three generation RLS pedigree RLS3002 consisting of 11 affected and 7 unaffected living family members was recruited. The family had been examined for four of the known loci (5q, 12q, 14p and 9p) (Abdulrahim 2008). The aim of this study was to continue examining this Irish RLS pedigree for possible linkage to the previously described loci and associated regions. Using informative microsatellite markers linkage was excluded to the loci on 5q, 12q, 14p, 9p, 20p, 16p, 19p, 4q, 17p and also within the regions reported to be associated with RLS. This suggested the presence of a new unidentified locus. A genome-wide scan was performed using two microsatellite marker screening sets (Research Genetics Inc. Mapping set and the Applied Biosystems Linkage mapping set version 2.5). Linkage analysis was conducted under an autosomal dominant model with a penetrance of 95% and an allele frequency of 0.01. A maximum LOD score of 3.59 at θ=0.00 for marker D19S878 indicated significant linkage on chromosome 19p. Haplotype analysis defined a genetic region of 6.57 cM on chromosome 19p13.3, corresponding to 2.5 Mb. There are approximately 100 genes annotated within the critical region. Sequencing of two candidate genes, KLF16 and GAMT, selected on the assumed pathophysiology of RLS, did not identify any sequence variant. This study provides evidence of a novel RLS locus in an Irish pedigree, thus supporting the picture of RLS as a genetically heterogeneous trait.
Resumo:
The past two decades have seen substantial gains in our understanding of the complex processes underlying disturbed brain-gut communication in disorders such as irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). Despite a growing understanding of the neurobiology of brain-gut axis dysfunction, there is a relative paucity of investigations into how the various factors involved in dysregulating the brain-gut axis, including stress, immune activation and pain, could impact on fundamental brain processes such as cognitive performance. To this end, we proposed a cognitive neurobiology of brain-gut axis dysfunction and took a novel approach to examine how disturbed brain-gut interactions may manifest as altered cognitive performance in IBS and IBD, both cross-sectionally and prospectively. We have demonstrated that, disorders of the brain-gut axis are characterised by stable deficits in specific cognitive domains. Specifically, patients with IBS exhibit a consistent hippocampal mediated visuospatial memory impairment. In addition we have found evidence to suggest a similar visuospatial impairment in IBD. However, our most consistent finding within this population was that patients with Crohn’s disease exhibit impaired selective attention/ response inhibition on the classic Stroop interference test. These cognitive deficits may serve to perpetuate and sustain brain-gut axis dysfunction. Furthermore, this research has shed light on some of the underlying neurobiological mechanisms that may be mediating cognitive dysfunction in IBS. Our findings may have significant implications for the individual who suffers from a brain-gut axis disorder and may also inform future treatment strategies. Taken together, these findings can be incorporated into existing neurobiological models of brain-gut axis dysfunction, to develop a more comprehensive model accounting for the cognitive-neurobiology of brain-gut axis disorders. This has furthered our understanding of disease pathophysiology and may ultimately aid in both the diagnosis and treatment of these highly prevalent, but poorly understood disorders.
Resumo:
Visceral pain is a debilitating disorder which affects up to 25% of the population at any one time. It is a global term used to describe pain originating from the internal organs, which is distinct from somatic pain. Currently the treatment strategies are unsatisfactory, with development of novel therapeutics hindered by a lack of detailed knowledge of the underlying mechanisms. The work presented in this thesis aimed to redress this issue and look in more detail at the molecular mechanisms of visceral pain in preclinical models. Stress has long been implicated in the pathophysiology of visceral pain in both preclinical and clinical studies. Here a mouse model of early-life stress-induced visceral hypersensitivity was validated. Moreover, mouse strain differences were also apparent in visceral sensitivity suggesting a possible genetic component to the underlying pathophysiology. Furthermore, gender and sex hormones were also implicated in stress sensitivity and visceral pain. Using the rat model of maternal separation, some of the epigenetic mechanisms underpinning visceral hypersensitivity, specifically the contribution of histone acetylation were unravelled. Glutamate has been well established in somatic pain processing, however, its contribution to visceral pain has not been extensively characterised. It was found that glutamate uptake is impaired in viscerally hypersensitive animals, an effect which could be reversed by treatment with riluzole, a glutamate uptake activator. Moreover, negative modulation of the metabotropic glutamate (mGlu) receptor 7 was sufficient to reverse visceral hypersensitivity in a stress sensitive rat strain, the Wistar Kyoto rat. Furthermore, toll-like receptor 4 (TLR4) was implicated in chronic stress-induced visceral hypersensitivity. Taken together, these findings have furthered our knowledge of the pathophysiology of visceral pain. In addition, we have identified glutamate transporters, mGlu7 receptor, histone acetylation and TLR4 as novel targets, amenable to pharmacological manipulation for the specific treatment of visceral pain.