3 resultados para Bivariate survival function

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dynamic positron emission tomography (PET) imaging can be used to track the distribution of injected radio-labelled molecules over time in vivo. This is a powerful technique, which provides researchers and clinicians the opportunity to study the status of healthy and pathological tissue by examining how it processes substances of interest. Widely used tracers include 18F-uorodeoxyglucose, an analog of glucose, which is used as the radiotracer in over ninety percent of PET scans. This radiotracer provides a way of quantifying the distribution of glucose utilisation in vivo. The interpretation of PET time-course data is complicated because the measured signal is a combination of vascular delivery and tissue retention effects. If the arterial time-course is known, the tissue time-course can typically be expressed in terms of a linear convolution between the arterial time-course and the tissue residue function. As the residue represents the amount of tracer remaining in the tissue, this can be thought of as a survival function; these functions been examined in great detail by the statistics community. Kinetic analysis of PET data is concerned with estimation of the residue and associated functionals such as ow, ux and volume of distribution. This thesis presents a Markov chain formulation of blood tissue exchange and explores how this relates to established compartmental forms. A nonparametric approach to the estimation of the residue is examined and the improvement in this model relative to compartmental model is evaluated using simulations and cross-validation techniques. The reference distribution of the test statistics, generated in comparing the models, is also studied. We explore these models further with simulated studies and an FDG-PET dataset from subjects with gliomas, which has previously been analysed with compartmental modelling. We also consider the performance of a recently proposed mixture modelling technique in this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growth/differentiation factor 5 (GDF5) and glial cell line-derived neurotrophic factor (GDNF) are neurotrophic factors that promote the survival of midbrain dopaminergic neurons in vitro and in vivo. Both factors have potent neurotrophic and neuroprotective effects in rat models of Parkinson's disease (PD), and may represent promising new therapies for PD. The aim of the present study was to investigate the endogenous expression and function of GDF5 and GDNF in the nigrostriatal dopaminergic system during development and in rat models of PD. Examination of the temporal expression patterns of endogenous GDF5, GDNF, and their respective receptors, in the developing and adult nigrostriatal dopaminergic system suggest that these factors play important roles in promoting the survival and maturation of midbrain dopaminergic neurons during the period of postnatal programmed cell death. The relative levels of GDF5 and GDNF mRNAs in the midbrain and striatum, and their individual temporal expression patterns during development, suggest that their modes of actions are quite distinct in vivo. Furthermore, the sustained expression of GDF5, GDNF, and their receptors into adulthood suggest roles for these factors in the continued support and maintenance of mature nigrostriatal dopaminergic neurons. The present study found that endogenous GDF5, GDNF, and their receptors are differentially expressed in two 6-hydroxydopamine-induced lesion adult rat models of PD. In both terminal and axonal lesion models of PD, GDF5 mRNA levels in the striatum increased at 10 days post-lesion, while GDNF mRNA levels in the nigrostriatal system decreased at 10 and 28 days post-lesion. Thus, despite the fact that exogenous GDF5 and GDNF have similar effects on midbrain dopaminergic neurons in vitro and in vivo, their endogenous responses to a neurotoxic injury are quite distinct. These results highlight the importance of studying the temporal dynamic changes in neurotrophic factor expression during development and in animal models of PD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms governing fetal development follow a tightly regulated pattern of progression such that interference at any one particular stage is likely to have consequences for all other stages of development in the physiological system that has been affected thereafter. These disturbances can take the form of many different events but two of the most common and widely implicated in causing detrimental effects to the developing fetus are maternal immune activation (MIA) and maternal stress. MIA has been shown to cause an increase in circulating proinflammatory cytokines in both the maternal and fetal circulation. This increase in proinflammatory mediators in the fetus is thought to occur by fetal production rather than through exchange between the maternal-fetal interface. In the case of maternal stress it is increased levels of stress related hormones such as cortisol/corticosterone which is thought to elicit the detrimental effects on fetal development. In the case of both maternal infection and stress the timing and nature of the insult generally dictates the severity and type of effects seen in affected offspring. We investigated the effect of a proinflammatory environment on neural precursor cells of which exposure resulted in a significant decrease in the normal rate of proliferation of NPCs in culture but did not have any effect on cell survival. These effects were seen to be age dependent. Using a restraint stress model we investigated the effects of prenatal stress on the development of a number of different physiological systems in the same cohort of animals. PNS animals exhibited a number of aberrant changes in cardiovascular function with altered responses to stress and hypertension, modifications in respiratory responses to hypercapnic and hypoxic challenges and discrepancies in gastrointestinal innervation. Taken together these findings suggest that both maternal infection and maternal stress are detrimental to the normal development of the fetus.