2 resultados para Biological structure
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
This thesis is focused on the design and synthesis of a diverse range of novel organosulfur compounds (sulfides, sulfoxides and sulfones), with the objective of studying their solid state properties and thereby developing an understanding of how the molecular structure of the compounds impacts upon their solid state crystalline structure. In particular, robust intermolecular interactions which determine the overall structure were investigated. These synthons were then exploited in the development of a molecular switch. Chapter One provides a brief overview of crystal engineering, the key hydrogen bonding interactions utilized in this work and also a general insight into “molecular machines” reported in the literature of relevance to this work. Chapter Two outlines the design and synthetic strategies for the development of two scaffolds suitable for incorporation of terminal alkynes, organosulfur and ether functionalities, in order to investigate the robustness and predictability of the S=O•••H-C≡C- and S=O•••H-C(α) supramolecular synthons. Crystal structures and a detailed analysis of the hydrogen bond interactions observed in these compounds are included in this chapter. Also the biological activities of four novel tertiary amines are discussed. Chapter Three focuses on the design and synthesis of diphenylacetylene compounds bearing amide and sulfur functionalities, and the exploitation of the N-H•••O=S interactions to develop a “molecular switch”. The crystal structures, hydrogen bonding patterns observed, NMR variable temperature studies and computer modelling studies are discussed in detail. Chapter Four provides the overall conclusions from chapter two and chapter three and also gives an indication of how the results of this work may be developed in the future. Chapter Five contains the full experimental details and spectral characterisation of all novel compounds synthesised in this project, while details of the NCI (National Cancer Institute) biological test results are included in the appendix.
Resumo:
This thesis outlines the synthetic chemistry involved in the preparation of a range of novel indazole compounds and details the subsequent investigation into their potential as biologically active agents. The synthetic route utilised in this research to form the indazole structure was the [3+2] dipolar cycloaddition of diazo carbonyl compounds with reactive aryne intermediates generated in situ. The preparation of further novel indazole derivatives containing different functional groups and substituents was performed by synthesising alternative 1,3- dipole and dipolarophile analogues and provided additionally diverse compounds. Further derivatisation of the indazole product was made possible by deacylation and alkylation methods. Transformation reactions were performed on alkenecontaining ester side chains to provide novel epoxide, aldehyde and tertiary amine derivatives. The first chapter is a review of the literature beginning with a short overview on the structure, reactivity and common synthetic routes to diazo carbonyl derivatives. More attention is given to the use of diazo compounds as 1,3-dipoles in cycloaddition reactions or where the diazo group is incorporated into the final product. A review of the interesting background, structure and reactivity of aryne intermediates is also presented. In addition, some common syntheses of indazole compounds are presented as well as a brief discussion on the importance of indazole compounds as therapeutic agents. The second chapter discusses the synthetic routes employed towards the synthesis of the range of indazoles. Initially, the syntheses of the diazo carbonyl and aryne precursors are described. Next, the synthetic methods to prepare the indazole compounds are provided followed by discussion on derivatisation of the indazole compounds including N-deacylation, N-benzylation and ester side-chain transformation of some alkene-containing indazoles. A series of novel indazole derivatives were submitted for anti-cancer screening at the U.S National Cancer Institute (NCI). A number of these derivatives were identified as hit compounds, with excellent growth inhibition. The results obtained from biological evaluation from the NCI are provided with further results pending from the Community for Open Antimicrobial Drug Discovery. The third chapter details the full experimental procedures, including spectroscopic and analytical data for all the compounds prepared during this research.