2 resultados para BROMINE

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mercury is a potent neurotoxin even at low concentrations. The unoxidised metal has a high vapour pressure and can circulate through the atmosphere, but when oxidised can deposit and be accumulated through the food chain. This work aims to investigate the oxidation processes of atmospheric Hg0(g). The first part describes efforts to make a portable Hg sensor based on Cavity Enhanced Absorption Spectroscopy (CEAS). The detection limit achieved was 66 ngm−3 for a 10 second averaging time. The second part of this work describes experiments carried out in a temperature controlled atmospheric simulation chamber in the Desert Research Institute, Reno, Nevada, USA. The chamber was built around an existing Hg CRDS system that could measure Hg concentrations in the chamber of<100 ngm−3 at 1 Hz enabling reactions to be followed. The main oxidant studied was bromine, which was quantified with a LED based CEAS system across the chamber. Hg oxidation in the chamber was found to be mostly too slow for current models to explain. A seven reaction model was developed and tested to find which parameters were capable of explaining the deviation. The model was overdetermined and no unique solution could be found. The most likely possibility was that the first oxidation step Hg + Br →HgBr was slower than the preferred literature value by a factor of two. However, if the more uncertain data at low [Br2] was included then the only parameter that could explain the experiments was a fast, temperature independent dissociation of HgBr some hundreds of times faster than predicted thermolysis or photolysis rates. Overall this work concluded that to quantitatively understand the reaction of Hg with Br2, the intermediates HgBr and Br must be measured. This conclusion will help to guide the planning of future studies of atmospheric Hg chemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DOB (4‐bromo‐2,5‐dimethoxyamphetamine) is a newly emerging hallucinogenic amphetamine that sparked serious health warnings in Ireland, following its first seizure back in 2003. Known more commonly as “snowball”, this drug is highly potent and may be used as a substitute to ecstasy (MDMA) and lysergic acid diethylamide (LSD). To date, the work carried out on the impurity profiling of DOB is limited in comparison to amphetamine, methamphetamine and MDMA. In this work, the impurity profile of 4‐bromo‐2,5‐dimethoxyphenyl‐2‐propanone (4‐Br‐2,5‐P2P) is explored. This ketone is a direct precursor to DOB. Its more versatile non‐bromo analogue, 2,5‐ dimethoxyphenyl‐2‐propanone (2,5‐P2P) is also examined, as in addition to DOB, it may be used in the synthesis of a range of several other hallucinogenic amphetamines. A number of different routes to both 2,5‐P2P and 4‐Br‐2,5‐P2P were investigated. For each of these routes, the impurities produced were carefully isolated. Following isolation, the impurities were fully characterised (by 1H‐NMR/13C‐NMR spectroscopy, IR, MS), in order to aid structure elucidation. Compounds not easily resolved by flash column chromatography were analysed by LC‐MS and/or independently synthesised for the purpose of attaining reference standards. Adaptation of the well‐known ‘phenylacetic acid route’ to synthesis of both 2,5‐P2P and 4‐Br‐2,5‐P2P, was found to provide low yields of the expected ketone products. Four impurities were isolated during the preparation of both ketones. The yield of one of these impurities (possessing a dibenzylketone core), was greatly influenced by the amount of acetic anhydride reagent used during the reaction. Having carried out the reaction with several different equivalents of acetic anhydride, it was found that formation of the ‘dibenzylketone’ could not be eliminated. This may increase its likelihood of being detected in the final drug product. The ‘Darzens route’, having very recently emerged as a synthetic route to amphetamine and MDMA precursors, was discovered to be a viable route for manufacture of 2,5‐P2P and 4‐Br‐2,5‐P2P. Despite execution of the reaction being more tedious, the route provides superior yields (≈50–60%) to those achieved using the ‘phenylacetic acid route’ (≈35–38%). Incorporation of a bromine atom (at the aromatic 4‐position) is required at some stage during synthesis of DOB. The bromination of many intermediates/starting materials was therefore also examined in detail. Bromination of the acid starting material 2,5‐dimethoxyphenylacetic acid (2,5‐PAA) was found to be clean and high yielding. This was in stark contrast to the bromination of the benzaldehyde starting material, the ketone precursor 2,5‐P2P and the dibenzylketone‐based impurity. Numerous brominated products were isolated from each of these reactions, many of which were novel compounds, and previously unreported as impurities in the literature. The unpredictable/nondescript nature of these brominations is likely to have a significant impact on the impurity profile of illicitly produced DOB.