13 resultados para BLOCK-COPOLYMER MICELLES

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis investigated the block copolymer (BCP) thin film characteristics and pattern formation using a set of predetermined molecular weights of PS-b-PMMA and PS-b-PDMS. Post BCP pattern fabrication on the required base substrate a dry plasma etch process was utilised for successful pattern transfer of the BCP resist onto underlying substrate. The resultant sub-10 nm device features were used in front end of line (FEoL) fabrication of active device components in integrated circuits (IC). The potential use of BCP templates were further extended to metal and metal-oxide nanowire fabrication. These nanowires were further investigated in real-time applications as novel sensors and supercapacitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis investigated well-ordered block copolymer (BCP) thin film characteristics and their use for nanoscale pattern formation using a series of polystyrene-block-polymethylmethacrylate (PS-b-PMMA), polystyrene-blockpolydimethylsiloxane (PS-b-PDMS) and polystyrene-block-poly(ethylene oxide) (PS-b-PEO) systems of various molecular weights. BCP thin films, which act as an ‘on-chip’ etch mask and material templates, are highly promising self-assembling process for future scalable nanolithography. Unlike conventional BCP processing methods, the work in this thesis demonstrates that well-ordered patterns can be achieved in a few seconds compared to several hours by use of a non-conventional microwave assisted technique. As a result, well-ordered BCP nanoscale structures can be developed in industry appropriate periods facilitating their incorporation into current technologies. An optimised and controlled plasma dry etch process was used for successful pattern transfer to the underlying silicon substrate. Long range ordered BCP templates were further modified by selective metal inclusion technique to form a hard mask template towards fabrication of high aspect ratio nanopillars and nanowires. The work described here is centred on how these templates might be used to generate function at substrate surfaces. Herein we describe a number of innovations which might allow their successful uptake in a number of applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Directed self-assembly (DSA) of block copolymers (BCPs) is a prime candidate to further extend dimensional scaling of silicon integrated circuit features for the nanoelectronic industry. Top-down optical techniques employed for photoresist patterning are predicted to reach an endpoint due to diffraction limits. Additionally, the prohibitive costs for “fabs” and high volume manufacturing tools are issues that have led the search for alternative complementary patterning processes. This thesis reports the fabrication of semiconductor features from nanoscale on-chip etch masks using “high χ” BCP materials. Fabrication of silicon and germanium nanofins via metal-oxide enhanced BCP on-chip etch masks that might be of importance for future Fin-field effect transistor (FinFETs) application are detailed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microwave annealing is an emerging technique for achieving ordered patterns of block copolymer films on substrates. Little is understood about the mechanisms of microphase separation during the microwave annealing process and how it promotes the microphase separation of the blocks. Here, we use controlled power microwave irradiation in the presence of tetrahydrofuran (THF) solvent, to achieve lateral microphase separation in high- lamellar-forming poly(styrene-b-lactic acid) PS-b-PLA. A highly ordered line pattern was formed within seconds on silicon, germanium and silicon on insulator (SOI) substrates. In-situ temperature measurement of the silicon substrate coupled to condition changes during "solvo-microwave" annealing allowed understanding of the processes to be attained. Our results suggest that the substrate has little effect on the ordering process and is essentially microwave transparent but rather, it is direct heating of the polar THF molecules that causes microphase separation. It is postulated that the rapid interaction of THF with microwaves and the resultant temperature increase to 55 degrees C within seconds causes an increase of the vapor pressure of the solvent from 19.8 to 70 kPa. This enriched vapor environment increases the plasticity of both PS and PLA chains and leads to the fast self-assembly kinetics. Comparing the patterns formed on silicon, germanium and silicon on insulator (SOI) and also an in situ temperature measurement of silicon in the oven confirms the significance of the solvent over the role of substrate heating during "solvo-microwave" annealing. Besides the short annealing time which has technological importance, the coherence length is on a micron scale and dewetting is not observed after annealing. The etched pattern (PLA was removed by an Ar/O-2 reactive ion etch) was transferred to the underlying silicon substrate fabricating sub-20 nm silicon nanowires over large areas demonstrating that the morphology is consistent both across and through the film.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microphase separation of block copolymer (BCP) thin films can afford a simple and cost-effective means to studying nanopattern surfaces, and especially the fabrication of nanocircuitry. However, because of complex interface effects and other complications, their 3D morphology, which is often critical for application, can be more complex than first thought. Here, we describe how emerging microscopic methods may be used to study complex BCP patterns and reveal their rich detail. These methods include helium ion microscopy (HIM) and high resolution x-section transmission electron microscopy (XTEM), and complement conventional secondary electron and atomic force microscopies (SEM and TEM). These techniques reveal that these structures are quite different to what might be expected. We illustrate the advances in the understanding of BCP thin film morphology in several systems, which result from this characterization. The systems described include symmetric, lamellar forming polystyrene-b-polymethylmethacrylate (PS-b-PMMA), cylinder forming polystyrene-b-polydimethylsiloxane (PS-b-PDMS), as well as lamellar and cylinder forming patterns of polystyrene-b-polyethylene oxide (PS-b-PEO) and polystyrene-b-poly-4-vinylpyridine (PS-b-P4VP). Each of these systems exhibits more complex arrangements than might be first thought. Finding and developing techniques whereby complex morphologies, particularly at very small dimensions, can be determined is critical to the practical use of these materials in many applications. The importance of quantifying these complex morphologies has implications for their use in integrated circuit manufacture, where they are being explored as alternative pattern forming methods to conventional UV lithography.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nanometer range structure produced by thin films of diblock copolymers makes them a great of interest as templates for the microelectronics industry. We investigated the effect of annealing solvents and/or mixture of the solvents in case of symmetric Poly (styrene-block-4vinylpyridine) (PS-b-P4VP) diblock copolymer to get the desired line patterns. In this paper, we used different molecular weights PS-b-P4VP to demonstrate the scalability of such high χ BCP system which requires precise fine-tuning of interfacial energies achieved by surface treatment and that improves the wetting property, ordering, and minimizes defect densities. Bare Silicon Substrates were also modified with polystyrene brush and ethylene glycol self-assembled monolayer in a simple quick reproducible way. Also, a novel and simple in situ hard mask technique was used to generate sub-7nm Iron oxide nanowires with a high aspect ratio on Silicon substrate, which can be used to develop silicon nanowires post pattern transfer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fabrication of nanoscale patterns through the bottom-up approach of self-assembly of phase-separated block copolymers (BCP) holds promise for nanoelectronics applications. For lithographic applications, it is useful to vary the morphology of BCPs by monitoring various parameters to make “from lab to fab” a reality. Here I report on the solvent annealing studies of lamellae forming polystyrene-blockpoly( 4-vinylpyridine) (PS-b-P4VP). The high Flory-Huggins parameter (χ = 0.34) of PS-b-P4VP makes it an ideal BCP system for self-assembly and template fabrication in comparison to other BCPs. Different molecular weights of symmetric PS-b-P4VP BCPs forming lamellae patterns were used to produce nanostructured thin films by spin-coating from mixture of toluene and tetrahydrofuran(THF). In particular, the morphology change from micellar structures to well-defined microphase separated arrangements is observed. Solvent annealing provides a better alternative to thermal treatment which often requires long annealing periods. The choice of solvent (single and dual solvent exposure) and the solvent annealing conditions have significant effects on the morphology of films and it was found that a block neutral solvent was required to realize vertically aligned PS and P4VP lamellae. Here, we have followed the formation of microdomain structures with time development at different temperatures by atomic force microscopy (AFM). The highly mobilized chains phase separate quickly due to high Flory-Huggins (χ) parameter. Ultra-small feature size (~10 nm pitch size) nanopatterns were fabricated by using low molecular weight PSb- P4VP (PS and P4VP blocks of 3.3 and 3.1 kg mol-1 respectively). However, due to the low etch contrast between the blocks, pattern transfer of the BCP mask is very challenging. To overcome the etch contrast problem, a novel and simple in-situ hard mask technology is used to fabricate the high aspect ratio silicon nanowires. The lamellar structures formed after self-assembly of phase separated PS-b-P4VP BCPs were used to fabricate iron oxide nanowires which acted as hard mask material to facilitate the pattern transfer into silicon and forming silicon nanostructures. The semiconductor and optical industries have shown significant interest in two dimensional (2D) molybdenum disulphide (MoS2) as a potential device material due to its low band gap and high mobility. However, current methods for its synthesis are not ‘fab’ friendly and require harsh environments and processes. Here, I also report a novel method to prepare MoS2 layered structures via self-assembly of a PS-b-P4VP block copolymer system. The formation of the layered MoS2 was confirmed by XPS, Raman spectroscopy and high resolution transmission electron microscopy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanostructured materials are central to the evolution of future electronics and information technologies. Ferroelectrics have already been established as a dominant branch in the electronics sector because of their diverse application range such as ferroelectric memories, ferroelectric tunnel junctions, etc. The on-going dimensional downscaling of materials to allow packing of increased numbers of components onto integrated circuits provides the momentum for the evolution of nanostructured ferroelectric materials and devices. Nanoscaling of ferroelectric materials can result in a modification of their functionality, such as phase transition temperature or Curie temperature (TC), domain dynamics, dielectric constant, coercive field, spontaneous polarisation and piezoelectric response. Furthermore, nanoscaling can be used to form high density arrays of monodomain ferroelectric nanostructures, which is desirable for the miniaturisation of memory devices. This thesis details the use of various types of nanostructuring approaches to fabricate arrays of ferroelectric nanostructures, particularly non-oxide based systems. The introductory chapter reviews some exemplary research breakthroughs in the synthesis, characterisation and applications of nanoscale ferroelectric materials over the last decade, with priority given to novel synthetic strategies. Chapter 2 provides an overview of the experimental methods and characterisation tools used to produce and probe the properties of nanostructured antimony sulphide (Sb2S3), antimony sulpho iodide (SbSI) and lead titanate zirconate (PZT). In particular, Chapter 2 details the general principles of piezoresponse microscopy (PFM). Chapter 3 highlights the fabrication of arrays of Sb2S3 nanowires with variable diameters using newly developed solventless template-based approach. A detailed account of domain imaging and polarisation switching of these nanowire arrays is also provided. Chapter 4 details the preparation of vertically aligned arrays of SbSI nanorods and nanowires using a surface-roughness assisted vapour-phase deposition method. The qualitative and quantitative nanoscale ferroelectric properties of these nanostructures are also discussed. Chapter 5 highlights the fabrication of highly ordered arrays of PZT nanodots using block copolymer self-assembled templates and their ferroelectric characterisation using PFM. Chapter 6 summarises the conclusions drawn from the results reported in chapters 3, 4 and 5 and the future work.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanostructured materials are central to the evolution of future electronics and biomedical applications amongst other applications. This thesis is focused on developing novel methods to prepare a number of nanostructured metal oxide particles and films by a number of different routes. Part of the aim was to see how techniques used in nanoparticle science could be applied to thin film methods to develop functional surfaces. Wet-chemical methods were employed to synthesize and modify the metal oxide nanostructures (CeO2 and SiO2) and their structural properties were characterized through advanced X-ray diffraction, electron microscopy, photoelectron spectroscopy and other techniques. Whilst particulates have uses in many applications, their attachment to surfaces is of importance and this is frequently challenging. We examined the use of block copolymer methods to form very well defined metal oxide particulate-like structures on the surface of a number of substrates. Chapter 2 describes a robust method to synthesize various sized silica nanoparticles. As-synthesized silica nanoparticles were further functionalized with IR-820 and FITC dyes. The ability to create size controlled nanoparticles with associated (optical) functionality may have significant importance in bio-medical imaging. Thesis further describes how non-organic modified fluorescent particles might be prepared using inorganic oxides. A study of the concentrations and distributions of europium dopants within the CeO2 nanoparticles was undertaken and investigated by different microscopic and spectroscopic techniques. The luminescent properties were enhanced by doping and detailed explanations are reported. Additionally, the morphological and structural evolution and optical properties were correlated as a function of concentrations of europium doping as well as with further annealing. Further work using positron annihilation spectroscopy allowed the study of vacancy type defects formed due to europium doping in CeO2 crystallites and this was supported by complimentary UV-Vis spectra and XRD work. During the last few years the interest in mesoporous silica materials has increased due to their typical characteristics such as potential ultra-low dielectric constant materials, large surface area and pore volume, well-ordered and uniform pores with adjustable pores between 2 and 50 nm. A simple, generic and cost-effective route was used to demonstrate the synthesis of 2D mesoporous silica thin films over wafer scale dimensions in chapter 5. Lithographic resist and in situ hard mask block copolymer followed by ICP dry etching were used to fabricate mesoporous silica nanostructures. The width of mesoporous silica channels can be varied by using a variety of commercially available lithographic resists whereas depth of the mesoporous silica channels can be varied by altering the etch time. The crystal structure, morphology, pore arrangement, pore diameters, thickness of films and channels were determined by XRD, SEM, ellipsometry and the results reported. This project also extended work towards the study of the antimicrobial study of nanopatterned silver nanodot arrays formed using the block copolymer approach defined above. Silver nanodot arrays were successfully tested for antimicrobial activity over S. aureus and P. aeruginosa biofilms and results shows silver nanodots has good antimicrobial activity for both S. aureus and P. aeruginosa biofilms. Thus, these silver nanodot arrays shows a potential to be used as a substitute for the resolution of infection complications in many areas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Block copolymer (BCP) self-assembly is a low-cost means to nanopattern surfaces. Here, we use these nanopatterns to directly print arrays of nanodots onto a conducting substrate (Indium Tin Oxide (ITO) coated glass) for application as an electrochemical sensor for ethanol (EtOH) and hydrogen peroxide (H

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose – To consider the economic and physical impact of electronic journals on remotely stored print stock. Design/methodology/approach – A collection of print journals was used as an object for consideration. Physical and heritage aspects of the collection are examined and questions are posed regarding the wisdom of future retention in response to increased demand for electronic alternatives. Findings – Emerging trends predict a predominance of periodical literature in electronic form. The future of local remote storage for low demand printed journal collections needs to be evaluated in economic as well as cultural terms. Research limitations/implications – Based on a collection at the Boole Library, University College Cork, Ireland. Practical implications – Similar consideration should be given to collections in other regional libraries. Originality/value – Contributes to discussions on the long-term value of retaining print journal holdings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semiconductor nanowires are pseudo 1-D structures where the magnitude of the semiconducting material is confined to a length of less than 100 nm in two dimensions. Semiconductor nanowires have a vast range of potential applications, including electronic (logic devices, diodes), photonic (laser, photodetector), biological (sensors, drug delivery), energy (batteries, solar cells, thermoelectric generators), and magnetic (spintronic, memory) devices. Semiconductor nanowires can be fabricated by a range of methods which can be categorised into one of two paradigms, bottom-up or top-down. Bottom-up processes can be defined as those where structures are assembled from their sub-components in an additive fashion. Top-down fabrication strategies use sculpting or etching to carve structures from a larger piece of material in a subtractive fashion. This seminar will detail a number of novel routes to fabricate semiconductor nanowires by both bottom-up and top-down paradigms. Firstly, a novel bottom-up route to fabricate Ge nanowires with controlled diameter distributions in the sub-20 nm regime will be described. This route details nanowire synthesis and diameter control in the absence of a foreign seed metal catalyst. Additionally a top-down route to nanowire array fabrication will be detailed outlining the importance of surface chemistry in high-resolution electron beam lithography (EBL) using hydrogen silsesquioxane (HSQ) on Ge and Bi2Se3 surfaces. Finally, a process will be described for the directed self-assembly of a diblock copolymer (PS-b-PDMS) using an EBL defined template. This section will also detail a route toward selective template sidewall wetting of either block in the PS-b-PDMS system, through tailored functionalisation of the template and substrate surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Error correcting codes are combinatorial objects, designed to enable reliable transmission of digital data over noisy channels. They are ubiquitously used in communication, data storage etc. Error correction allows reconstruction of the original data from received word. The classical decoding algorithms are constrained to output just one codeword. However, in the late 50’s researchers proposed a relaxed error correction model for potentially large error rates known as list decoding. The research presented in this thesis focuses on reducing the computational effort and enhancing the efficiency of decoding algorithms for several codes from algorithmic as well as architectural standpoint. The codes in consideration are linear block codes closely related to Reed Solomon (RS) codes. A high speed low complexity algorithm and architecture are presented for encoding and decoding RS codes based on evaluation. The implementation results show that the hardware resources and the total execution time are significantly reduced as compared to the classical decoder. The evaluation based encoding and decoding schemes are modified and extended for shortened RS codes and software implementation shows substantial reduction in memory footprint at the expense of latency. Hermitian codes can be seen as concatenated RS codes and are much longer than RS codes over the same aphabet. A fast, novel and efficient VLSI architecture for Hermitian codes is proposed based on interpolation decoding. The proposed architecture is proven to have better than Kötter’s decoder for high rate codes. The thesis work also explores a method of constructing optimal codes by computing the subfield subcodes of Generalized Toric (GT) codes that is a natural extension of RS codes over several dimensions. The polynomial generators or evaluation polynomials for subfield-subcodes of GT codes are identified based on which dimension and bound for the minimum distance are computed. The algebraic structure for the polynomials evaluating to subfield is used to simplify the list decoding algorithm for BCH codes. Finally, an efficient and novel approach is proposed for exploiting powerful codes having complex decoding but simple encoding scheme (comparable to RS codes) for multihop wireless sensor network (WSN) applications.