2 resultados para Automatic seat belts.
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The advent of modern wireless technologies has seen a shift in focus towards the design and development of educational systems for deployment through mobile devices. The use of mobile phones, tablets and Personal Digital Assistants (PDAs) is steadily growing across the educational sector as a whole. Mobile learning (mLearning) systems developed for deployment on such devices hold great significance for the future of education. However, mLearning systems must be built around the particular learner’s needs based on both their motivation to learn and subsequent learning outcomes. This thesis investigates how biometric technologies, in particular accelerometer and eye-tracking technologies, could effectively be employed within the development of mobile learning systems to facilitate the needs of individual learners. The creation of personalised learning environments must enable the achievement of improved learning outcomes for users, particularly at an individual level. Therefore consideration is given to individual learning-style differences within the electronic learning (eLearning) space. The overall area of eLearning is considered and areas such as biometric technology and educational psychology are explored for the development of personalised educational systems. This thesis explains the basis of the author’s hypotheses and presents the results of several studies carried out throughout the PhD research period. These results show that both accelerometer and eye-tracking technologies can be employed as an Human Computer Interaction (HCI) method in the detection of student learning-styles to facilitate the provision of automatically adapted eLearning spaces. Finally the author provides recommendations for developers in the creation of adaptive mobile learning systems through the employment of biometric technology as a user interaction tool within mLearning applications. Further research paths are identified and a roadmap for future of research in this area is defined.
Resumo:
Quantitative analysis of penetrative deformation in sedimentary rocks of fold and thrust belts has largely been carried out using clast based strain analysis techniques. These methods analyse the geometric deviations from an original state that populations of clasts, or strain markers, have undergone. The characterisation of these geometric changes, or strain, in the early stages of rock deformation is not entirely straight forward. This is in part due to the paucity of information on the original state of the strain markers, but also the uncertainty of the relative rheological properties of the strain markers and their matrix during deformation, as well as the interaction of two competing fabrics, such as bedding and cleavage. Furthermore one of the single largest setbacks for accurate strain analysis has been associated with the methods themselves, they are traditionally time consuming, labour intensive and results can vary between users. A suite of semi-automated techniques have been tested and found to work very well, but in low strain environments the problems discussed above persist. Additionally these techniques have been compared to Anisotropy of Magnetic Susceptibility (AMS) analyses, which is a particularly sensitive tool for the characterisation of low strain in sedimentary lithologies.