2 resultados para Apparent motion
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
In professional sports there are in general three steps required to improve performance namely task definition, training and performance assessment. This process is iteratively repeated and feedback generated from quantitative performance measurement is in turn used for task redefinition. Task definition can be achieved in a number of ways including via video streaming or indeed and as is more common, by listening to coaching staff. However non-subjective performance evaluation is difficult due to the complexity of the movements involved. When considering the subset of sports where precision accuracy and repeatability are a necessity this problem becomes inherently more difficult to solve. Until recently sports such as martial arts, fencing and darts, where the smallest deviation from a prescribed movement goal can result in large outcome error, were deemed too difficult to characterise fully. Advances in technology, as illustrated by this study, now make this type of physiometry possible.
Resumo:
New compensation methods are presented that can greatly reduce the slit errors (i.e. transition location errors) and interval errors induced due to non-idealities in optical incremental encoders (square-wave). An M/T-type, constant sample-time digital tachometer (CSDT) is selected for measuring the velocity of the sensor drives. Using this data, three encoder compensation techniques (two pseudoinverse based methods and an iterative method) are presented that improve velocity measurement accuracy. The methods do not require precise knowledge of shaft velocity. During the initial learning stage of the compensation algorithm (possibly performed in-situ), slit errors/interval errors are calculated through pseudoinversebased solutions of simple approximate linear equations, which can provide fast solutions, or an iterative method that requires very little memory storage. Subsequent operation of the motion system utilizes adjusted slit positions for more accurate velocity calculation. In the theoretical analysis of the compensation of encoder errors, encoder error sources such as random electrical noise and error in estimated reference velocity are considered. Initially, the proposed learning compensation techniques are validated by implementing the algorithms in MATLAB software, showing a 95% to 99% improvement in velocity measurement. However, it is also observed that the efficiency of the algorithm decreases with the higher presence of non-repetitive random noise and/or with the errors in reference velocity calculations. The performance improvement in velocity measurement is also demonstrated experimentally using motor-drive systems, each of which includes a field-programmable gate array (FPGA) for CSDT counting/timing purposes, and a digital-signal-processor (DSP). Results from open-loop velocity measurement and closed-loop servocontrol applications, on three optical incremental square-wave encoders and two motor drives, are compiled. While implementing these algorithms experimentally on different drives (with and without a flywheel) and on encoders of different resolutions, slit error reductions of 60% to 86% are obtained (typically approximately 80%).