2 resultados para App predictions

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Monitoring user interaction activities provides the basis for creating a user model that can be used to predict user behaviour and enable user assistant services. The BaranC framework provides components that perform UI monitoring (and collect all associated context data), builds a user model, and supports services that make use of the user model. In this case study, a Next-App prediction service is built to demonstrate the use of the framework and to evaluate the usefulness of such a prediction service. Next-App analyses a user's data, learns patterns, makes a model for a user, and finally predicts based on the user model and current context, what application(s) the user is likely to want to use. The prediction is pro-active and dynamic; it is dynamic both in responding to the current context, and also in that it responds to changes in the user model, as might occur over time as a user's habits change. Initial evaluation of Next-App indicates a high-level of satisfaction with the service.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a road network, cyclists are the group exposed to the maximum amount of risk. Route choice of a cyclist is often based on level of expertise, perceived or actual road risks, personal decisions, weather conditions and a number of other factors. Consequently, cycling tends to be the only significant travel mode where optimised route choice is not based on least-path or least-time. This paper presents an Android platform based mobile-app for personalised route planning of cyclists in Dublin. The mobile-app, apart from its immediate advantage to the cyclists, acts as the departure point for a number of research projects and aids in establishing some critical calibration values for the cycling network in Dublin.