6 resultados para Antioxidant Enzyme
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Oxysterols are products of cholesterol oxidation, which may be produced endogenously or may be absorbed from the diet where they are commonly found in foods of animal origin. Oxysterols are known to be cyctotoxic to cells in culture and mode of toxicity has been identified as apoptosis in certain cell lines. The cytotoxicity of the oxysterols 25-hydroxycholesterol (25-OH) and 7β-hydroxycholesterol (7β-OH) was examined in two human cell lines, HepG2, a hepatoma cell line, and U937, a monocytic cell line. Both 25-OH and 7β-OH were cytotoxic to the HepG2 cell line but apoptotic cells were not detected and it was concluded that cells underwent necrosis. 25-OH was not cytotoxic to the U937 cell line but it was found to have a cytostatic effect. 7β-OH was shown to induce apoptosis in the U937 line. The mechanism of oxysterol-induced apoptosis has not yet been fully elucidated, however the generation of an oxidative stress and the depletion of glutathione have been associated with the initial stages of the apoptotic process. The concentration of cellular antioxidant enzyme, superoxide dismutase (SOD) was increased in association with 7β-OH induced apoptosis in the U937 cell line. There was no change in the glutathione concentration or the SOD activity of HepG2 cells, which underwent necrosis in the presence of 7β-OH. Many apoptotic pathways center on the activation of caspase-3, which is the key executioner protease of apoptosis. Caspase-3 activity was also shown to increase in association with 7β-OH-induced apoptosis in U937 cells but there was no significant increase in caspase-3 activity in HepG2 cells. DNA fragmentation is regarded as the biochemical hallmark of apoptosis, therefore the comet assay as a measure of DNA fragmentation was assessed as a measure of apoptosis. The level of DNA fragmentation induced by 7β-OH, as measured using the comet assay, was similar for both cell lines. Therefore, it was concluded that the comet assay could not be used to distinguish between 7β-OH-induced apoptosis in U937 cells and 7β-OH-induced necrosis in HepG2 cells. The cytotoxicity and apoptotic potency of oxysterols 25-OH, 7β-OH, cholesterol- 5a,6a-epoxide (a-epoxide), cholesterol-5β,6β-epoxide (β-epoxide), 19-hydroxy-cholesterol (19-OH), and 7-ketocholesterol (7-keto) was compared in the U937 cell line. 7 β-OH, β-epoxide and 7-keto were found to induce apoptosis in U937 cells. 7β-OH-induced apoptosis was associated with a decrease in the cellular glutathione concentration and an increase in SOD activity, 7-keto and β-epoxide did not affect the glutathione concentration or the SOD activity of the cells.a-Epoxide, 19-OH and 25-OH were not cytotoxic to the U937 cell line.
Resumo:
Seaweeds contain a range of antioxidant compounds such as polyphenols, carotenoids, sulphated polysaccharides and vitamins and have the potential to be used as ingredients in neutraceuticals. The antioxidant activity of crude 60% methanol extracts prepared from five Irish seaweeds, Ascophyllum nodosum, Laminaria hyperborea, Pelvetia canaliculata, Fucus vesiculosus and Fucus serratus were examined using in-vitro assays and a cell model system to determine the antioxidant activity of the extracts and their ability to protect against H2O2 and tert-BOOH-induced DNA damage and alterations in cellular antioxidant status in the human adenocarcinoma, Caco-2 cell line. To optimise the extraction of antioxidant compounds from seaweeds, an accelerated solvent extraction (ASE®) was used in combination with food grade solvents. The antioxidant activity of these extracts against H2O2 and tert-BOOH-induced DNA damage and alterations in cellular antioxidant status was also assessed. Extracts that exhibited the highest antioxidant activity, A. nodosum (100% water and 80% ethanol extracts) and F. vesiculosus (60% ethanol extract) were selected as ingredients for incorporation into fluid milk and yogurt at concentrations of 0.25% and 0.5%. The addition of the seaweed extracts to milk and yogurt did not affect the pH or shelf-life properties of the products. Seaweed addition did however significantly influence the colour properties of the milk and yogurt. Yellowness values were significantly higher in yogurts containing F. vesiculosus at both concentrations and A. nodosum (80% ethanol) at the 0.5% concentration. In milk, the F. vesiculosus (60% ethanol) and A. nodosum (80% ethanol) at both the 0.25% and the 0.5% concentrations had higher greenness and yellowness values than the milk containing A. nodosum (100% water). Sensory analysis revealed that appearance and flavour governed the overall acceptability of yogurts with the control yogurt, and yogurts containing A. nodosum (100% water) were the most preferred samples by panellists. However, in the milk trial the perception of a fishy taste was the determining factor in the negative perception of milk. The unsupplemented control and the milk containing A. nodosum (100% water) at a concentration of 0.5% were the most overall accepted milk samples by the sensory panellists. The antioxidant activity of the extracts in milk and yogurt remained stable during storage as determined by the in-vitro assays. Seaweed supplemented milk and yogurt were also subjected to an in-vitro digestion procedure which mimics the human digestive system. The milk and yogurt samples and their digestates were added to Caco-2 cells to investigate their antioxidant potential however neither the undigested or digested samples protected against H2O2-induced DNA damage in Caco-2 cells.
Resumo:
In recent years, the potential to positively modulate human health through dietary approaches has received considerable attention. Bioactive peptides which are released during the hydrolysis or fermentation of food proteins or following digestion may exert beneficial physiological effects in vivo. The aim of this work was to isolate, characterise and evaluate Angiotensin-І-converting enzyme (ACE-І) inhibitory, antimicrobial and antioxidant peptides from the bovine myofibrillar proteins actin and myosin. In order to generate these peptides, the myofibrillar proteins actin and myosin were hydrolysed with digestive enzymes pepsin, trypsin and α-chymotrypsin, or with the industrial thermolysin-like enzyme “Thermoase”, Amano Inc. It was found that each hydrolysate generated contained peptides which possessed ACE inhibitory, antioxidant and antimicrobial activity. The peptides responsible in part for the observed ACE inhibitory, antioxidant and antimicrobial activity of a number of hydrolysates were isolated using the method of RP-HPLC and the bioactive peptides contained within each active fraction was determined using either MALDI-TOF MS/MS or N-terminal peptide sequencing. During the course of this thesis six ACE inhibitory and five antimicrobial peptides were identified. It was determined that the reported antioxidant activity was a direct result of a number of peptides working in synergy with each other. The IC50 values of the six ACE inhibitory peptides ranged in values of 6.85 to 75.7 µM which compare favourably to values previously reported for other food derived ACE inhibitory peptides, particularly the well known milk peptides IPP and VPP, IC50 values of 5 and 9 µM respectively. All five antimicrobial peptides identified in this thesis displayed activity against Escherichia coli, Salmonella typhimurium, Staphylococcus aureus and Listeria innocua with MIC values ranging from 0.625 to10 mM. The activity of each antimicrobial peptide was strain specific. Furthermore the role and importance of charged amino acids to the activity of antimicrobial peptides was also determined. Generally the removal of charged amino acids from the sequence of antimicrobial peptides resulted in a loss of antimicrobial activity. In conclusion, this thesis revealed that a range of bioactive peptides exhibiting ACE inhibitory, antioxidant and antimicrobial activities were encrypted in bovine myofibrillar proteins that could be released using digestive and industrial enzymes. Finally enzymatic hydrolysates of muscle proteins could potentially be incorporated into functional foods; however, the potential health benefits would need to be proven in human clinical studies.
Resumo:
Functional food ingredients, with scientifically proven and validated bioactive effects, present an effective means of inferring physiological health benefits to consumers to reduce the risk of certain diseases. The search for novel bioactive compounds for incorporation into functional foods is particularly active, with brewers’ spent grain (BSG, a brewing industry co-product) representing a unique source of potentially bioactive compounds. The DNA protective, antioxidant and immunomodulatory effects of phenolic extracts from both pale (P1 - P4) and black (B1 – B4) BSG were examined. Black BSG extracts significantly (P < 0.05) protected against DNA damage induced by hydrogen peroxide (H2O2) and extracts with the highest total phenolic content (TPC) protected against 3-morpholinosydnonimine hydrochloride (SIN-1)-induced oxidative DNA damage, measured by the comet assay. Cellular antioxidant activity assays were used to measured antioxidant potential in the U937 cell line. Extracts P1 – P3 and B2 - B4 demonstrated significant (P < 0.05) antioxidant activity, measured by the superoxide dismutase (SOD) activity, catalase (CAT) activity and gluatathione (GSH) content assays. Phenolic extracts P2 and P3 from pale BSG possess anti-inflammatory activity measured in concanavalin-A (conA) stimulated Jurkat T cells by an enzyme-linked immunosorbent assay (ELISA); significantly (P < 0.05) reducing production of interleukin-2 (IL-2), interleukin-4 (IL-4, P2 only), interleukin-10 (IL-10) and interferon-γ (IFN-γ). Black BSG phenolic extracts did not exhibit anti-inflammatory effects in vitro. Hydroxycinnamic acids (HA) have previously been shown to be the phenolic acids present at highest concentration in BSG; therefore the HA profile of the phenolic extracts used in this research, the original barley (before brewing) and whole BSG was characterised and quantified using high performance liquid chromatography (HPLC). The concentration of HA present in the samples was in the order of ferulic acid (FA) > p-coumaric acid (p-CA) derivatives > FA derivatives > p-CA > caffeic acid (CA) > CA derivatives. Results suggested that brewing and roasting decreased the HA content. Protein hydrolysates from BSG were also screened for their antioxidant and anti-inflammatory potential. A total of 34 BSG protein samples were tested. Initial analyses of samples A – J found the protein samples did not exert DNA protective effects (except hydrolysate H) or antioxidant effects by the comet and SOD assays, respectively. Samples D, E, F and J selectively reduced IFN-γ production (P < 0.05) in Jurkat T cells, measured using enzyme linked immunosorbent assay (ELISA). Further testing of hydrolysates K – W, including fractionated hydrolysates with molecular weight < 3, < 5 and > 5 kDa, found that higher molecular weight (> 5 kDa) and unfractionated hydrolysates demonstrate greatest anti-inflammatory effects, while fractionated hydrolysates were also shown to have antioxidant activity, by the SOD activity assay. A commercially available yogurt drink (Actimel) and snack-bar and chocolate-drink formulations were fortified with the most bioactive phenolic and protein samples – P2, B2, W, W < 3 kDa, W < 5 kDa, W > 5 kDa. All fortified foods were subjected to a simulated gastrointestinal in vitro digestion procedure and bioactivity retention in the digestates was determined using the comet and ELISA assays. Yogurt fortified with B2 digestate significantly (P < 0.05) protected against H2O2-induced DNA damage in Caco-2 cells. Greatest immunomodulatory activity was demonstrated by the snack-bar formulation, significantly (P < 0.05) reducing IFN-γ production in con-A stimulated Jurkat T cells. Hydrolysate W significantly (P < 0.05) increased the IFN-γ reducing capacity of the snack-bar. Addition of fractionated hydrolysate W < 3 kDa and W < 5 kDa to yogurt also reduced IL-2 production to a greater extent than the unfortified yogurt (P < 0.05).
Resumo:
The γ-secretase protease complexes and associated regulated intramembrane proteolysis play an important role in controlling receptor-mediated intracellular signalling events, which have a central role in Alzheimer’s disease, cancer progression and immune surveillance. It has previously been reported that the Interleukin-1 receptor, type 1, (IL-1R1) is a substrate for regulated intramembrane proteolysis, mediated by presenilin (PS)-dependent γ-secretase activity. The aims of this project were twofold. Firstly, to determine the conservation of regulated intramembrane proteolysis as a physiological occurrence amongst other cytokine receptors. In this regard, similar to IL-1R1, we identified the Tumour necrosis factor receptor type 1 (TNFR1) and the Toll like receptor 4 (TLR4) as novel γ-secretase substrates. Secondly, given that the diversity of signalling events mediated by the IL-1R1, TLR4 and TNFR1 are spatially segregated, we investigated the spatial distribution, subcellular trafficking and subcellular occurrence of regulated intramembrane proteolysis of IL-1R1, TLR4 and TNFR1. Using dynasore an inhibitor of clathrin-dependent receptor endocytosis, both ectodomain shedding and γ-secretase-mediated cleavage of IL-1R1 were observed post-internalization. In contrast, TNFR-1 underwent ectodomain shedding at the cell surface followed by endosomal γ-secretase-mediated cleavage. Furthermore, immortalised fibroblasts from PS1-deficient mice showed impaired γ-secretasemediated cleavage of IL-1R1 and TNFR1, indicating that both are cleaved by PS1-and not PS2-containing γ-secretase complexes. Subcellular fractionation and immunofluorescence studies revealed that the γ-secretase generated IL-1R1 ICD translocates to the nucleus on IL-1β stimulation. These observations further demonstrate the novel PS-dependent means of modulating IL-1β, LPS and TNFα- mediated immune responses by regulating IL-1R1/TLR4/TNFR1 protein levels within the cells.
Resumo:
Chronic sustained hypoxia (CH) induces functional weakness, atrophy, and mitochondrial remodelling in the diaphragm muscle. Animal models of CH present with changes similar to patients with respiratory-related disease, thus, elucidating the molecular mechanisms driving these adaptations is clinically important. We hypothesize that ROS are pivotal in diaphragm muscle adaptation to CH. C57BL6/J mice were exposed to CH (FiO2=0.1) for one, three, and six weeks. Sternohyoid (upper airway dilator), extensor digitorum longus (EDL), and soleus were studied as reference muscles as well as the diaphragm. The diaphragm was profiled using a redox proteomics approach followed by mass spectrometry. Following this, redox-modified metabolic enzyme activities and atrophy signalling were assessed using spectrophotometric assays and ELISA. Diaphragm isotonic performance was assessed after six weeks of CH ± chronic antioxidant supplementation. Protein carbonyl and free thiol content in the diaphragm were increased and decreased respectively after six weeks of CH – indicative of protein oxidation. These changes were temporally modulated and muscle specific. Extensive remodelling of metabolic proteins occurred and the stress reached the cross-bridge. Metabolic enzyme activities in the diaphragm were, for the most part, decreased by CH and differential muscle responses were observed. Redox sensitive chymotrypsin-like proteasome activity of the diaphragm was increased and atrophy signalling was observed through decreased phospho-FOXO3a and phospho-mTOR. Phospho-p38 MAPK content was increased and this was attenuated by antioxidant treatment. Hypoxia decreased power generating capacity of the diaphragm and this was restored by N-acetyl-cysteine (NAC) but not by tempol. Redox remodelling is pivotal for diaphragm adaptation to chronic sustained hypoxia. Muscle changes are dependent on duration of the hypoxia stimulus, activity profile of the muscle, and molecular composition of the muscle. The working respiratory muscles and slow oxidative fibres are particularly susceptible. NAC (antioxidant) may be useful as an adjunct therapy in respiratory-related diseases characterised by hypoxic stress.