5 resultados para Amylase Activities
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Seaweeds contain a range of antioxidant compounds such as polyphenols, carotenoids, sulphated polysaccharides and vitamins and have the potential to be used as ingredients in neutraceuticals. The antioxidant activity of crude 60% methanol extracts prepared from five Irish seaweeds, Ascophyllum nodosum, Laminaria hyperborea, Pelvetia canaliculata, Fucus vesiculosus and Fucus serratus were examined using in-vitro assays and a cell model system to determine the antioxidant activity of the extracts and their ability to protect against H2O2 and tert-BOOH-induced DNA damage and alterations in cellular antioxidant status in the human adenocarcinoma, Caco-2 cell line. To optimise the extraction of antioxidant compounds from seaweeds, an accelerated solvent extraction (ASE®) was used in combination with food grade solvents. The antioxidant activity of these extracts against H2O2 and tert-BOOH-induced DNA damage and alterations in cellular antioxidant status was also assessed. Extracts that exhibited the highest antioxidant activity, A. nodosum (100% water and 80% ethanol extracts) and F. vesiculosus (60% ethanol extract) were selected as ingredients for incorporation into fluid milk and yogurt at concentrations of 0.25% and 0.5%. The addition of the seaweed extracts to milk and yogurt did not affect the pH or shelf-life properties of the products. Seaweed addition did however significantly influence the colour properties of the milk and yogurt. Yellowness values were significantly higher in yogurts containing F. vesiculosus at both concentrations and A. nodosum (80% ethanol) at the 0.5% concentration. In milk, the F. vesiculosus (60% ethanol) and A. nodosum (80% ethanol) at both the 0.25% and the 0.5% concentrations had higher greenness and yellowness values than the milk containing A. nodosum (100% water). Sensory analysis revealed that appearance and flavour governed the overall acceptability of yogurts with the control yogurt, and yogurts containing A. nodosum (100% water) were the most preferred samples by panellists. However, in the milk trial the perception of a fishy taste was the determining factor in the negative perception of milk. The unsupplemented control and the milk containing A. nodosum (100% water) at a concentration of 0.5% were the most overall accepted milk samples by the sensory panellists. The antioxidant activity of the extracts in milk and yogurt remained stable during storage as determined by the in-vitro assays. Seaweed supplemented milk and yogurt were also subjected to an in-vitro digestion procedure which mimics the human digestive system. The milk and yogurt samples and their digestates were added to Caco-2 cells to investigate their antioxidant potential however neither the undigested or digested samples protected against H2O2-induced DNA damage in Caco-2 cells.
Resumo:
In this study, marine sponges collected in Irish waters were analysed for their associated microbiota. Of the approximately 240 bacterial isolates obtained from two sponges several showed antimicrobial activity; among them members of genera which have rarely been shown to produce antimicrobial compounds. Differences observed from the sponge-derived groups of isolates in terms of bioactivity suggests that S. carnosus isolates may be a better source of antibacterial compounds, while Leucosolenia sp. isolates appear to be a better source of antifungal compounds. More than 60% of fungal isolates obtained from 12 sponge samples proved to be bioactive. One of the isolates, which was closely related to Fusarium oxysporum and showed activity against bacteria and fungi, was investigated for its secondary metabolite genes. At least 5 different NRPS genes, with a sequence similarity as low as 50 % to known genes, were identified highlighting the likelihood that this isolate may be capable of producing novel secondary metabolites. A Micromonospora sp. was isolated from a Haliclona simulans sample collected in Irish waters. The isolate inhibited the growth of Gram positive bacterial test strains in three different antimicrobial assays. Employing preparative layer chromatography the compound responsible for the bioactivity could be isolated. According to LC-MS andNMR data the bioactive compound could indeed be novel. Finally, two deep water sponges were shown to host a remarkably different bacterial and archaeal diversity by application of 454 Pyrosequencing. The L. diversichela –proteobacterial community was dominated by a single ƴ-proteobacterial bacterium whereas the S. normani sample hosted a largely sponge specific microbial community, even more diverse than has been previously reported for shallow water sponges. Organisms potentially involved in nitrification, sulphate reduction and secondary metabolite production were found to be spatially distributed in the sponge. Furthermore, a deep sea specific population was implied.
Resumo:
Antifungal compounds produced by Lactic acid bacteria (LAB) metabolites can be natural and reliable alternative for reducing fungal infections pre- and post-harvest with a multitude of additional advantages for cereal-base products. Toxigenic and spoilage fungi are responsible for numerous diseases and economic losses. This thesis includes an overview of the impact fungi have on aspects of the cereal food chain. The applicability of LAB in plant protection and cereal industry is discussed in detail. Specific case studies include Fusarium head blight, and the impact of fungi in the malting and baking industry. The impact of Fusarium culmorum infected raw barley on the final malt quality was part of the investigation. In vitro infected barley grains were fully characterized. The study showed that the germinative energy of infected barley grains decreased by 45% and grains accumulated 199 μg.kg-1 of deoxynivalenol (DON). Barley grains were subsequently malted and fully characterized. Fungal biomass increased during all stages of malting. Infected malt accumulated 8-times its DON concentration during malting. Infected malt grains revealed extreme structural changes due to proteolytic, (hemi)-cellulolytic and starch degrading activity of the fungi, this led to increased friability and fragmentation. Infected grains also had higher protease and β-glucanase activities, lower amylase activity, a greater proportion of free amino and soluble nitrogen, and a lower β-glucan content. Malt loss was over 27% higher in infected malt when compared to the control. The protein compositional changes and respective enzymatic activity of infected barley and respective malt were characterized using a wide range of methods. F. culmorum infected barley grains showed an increase in proteolytic activity and protein extractability. Several metabolic proteins decreased and increased at different rates during infection and malting, showing a complex F. culmorum infection interdependence. In vitro F. culmorum infected malt was used to produce lager beer to investigate changes caused by the fungi during the brewing processes and their effect on beer quality attributes. It was found, that the wort containing infected malt had a lower pH, a higher FAN, higher β-glucan and a 45% increase in the purging rate, and led to premature yeast flocculation. The beer produced with infected malt (IB) had also a significantly different amino acid profile. IB flavour characterization revealed a higher concentration of esters, fusel alcohols, fatty acids, ketones, and dimethylsulfide, and in particular, acetaldehyde, when compared to the control. IB had a greater proportion of Strecker aldehydes and Maillard products contributing to an increased beer staling character. IB resulted in a 67% darker colour with a trend to better foam stability. It was also found that 78% of the accumulated mycotoxin deoxynivalenol in the malt was transferred into beer. A LAB cell-freesupernatant (cfs), produced in wort-base substrate, was investigated for its ability to inhibit Fusarium growth during malting. Wort was a suitable substrate for LAB exhibiting antifungal activity. Lactobacillus amylovorus DSM19280 inhibited 104 spores.mL-1 for 7 days, after 120 h of fermentation, while Lactobacillus reuteri R29 inhibited 105 spores.mL-1 for 7 days, after 48 h of fermentation. Both LAB cfs had significant different organic acid profiles. Acid-base antifungal compounds were identified and, phenyllactic, hydroxy-phenyllactic, and benzoic acids were present in higher concentrations when compared to the control. A 3 °P wort substrate inoculated With L. reuteri R29 (cfs) was applied in malting and successfully inhibited Fusarium growth by 23%, and mycotoxin DON by 80%. Malt attributes resulted in highly modified grains, lower pH, higher colouration, and higher extract yield. The implementation of selected LAB producing antifungal compounds can be used successfully in the malting process to reduce mould growth and mycotoxin production.
Resumo:
Aim: This thesis examines a question posed by founding occupational scientist Dr. Elizabeth Yerxa (1993) – “what is the relationship between human engagement in a daily round of activity (such as work, play, rest and sleep) and the quality of life people experience including their healthfulness” (p. 3). Specifically, I consider Yerxa’s question in relation to the quotidian activities and health-related quality of life (HRQoL) of late adolescents (aged 15 - 19 years) in Ireland. This research enquiry was informed by an occupational perspective of health and by population health, ecological, and positive youth development perspectives. Methods: This thesis is comprised of five studies. Two scoping literature reviews informed the direction of three empirical studies. In the latter, cross-sectional time use and HRQoL data were collected from a representative sample of 731 school-going late adolescents (response rate 52%) across 28 schools across Cork city and county (response rate 76%). In addition to socio-demographic data, time use data were collected using a standard time diary instrument while a nationally and internationally validated instrument, the KIDSCREEN-52, was used to measure HRQoL. Variable-centred and person-centred analyses were used. Results: The scoping reviews identified the lack of research on well populations or an adolescent age range within occupational therapy and occupational science; limited research testing the popular assumption that time use is related to overall well-being and quality of life; and the absence of studies that examined adolescent 24-hour time use and quality of life. Established international trends were mirrored in the findings of the examination of weekday and weekend time use. Aggregate-level, variable-centred analyses yielded some significant associations between HRQoL and individual activities, independent of school year, school location, family context, social class, nationality or diary day. The person-centred analysis of overall time use identified three male profiles (productive, high leisure and all-rounder) and two female profiles (higher study/lower leisure and moderate study/higher leisure). There was tentative support for the association between higher HRQoL and more balanced time use profiles. Conclusion: The findings of this thesis highlight the gendered nature of adolescent time use and HRQoL. Participation in daily activities, singly and in combination, appears to be associated with HRQoL. However, the nature of this relationship is complex. Individually and collectively, adolescents need to be educated and supported to create health through their everyday patterns of doing.
Resumo:
Quinoa (Chenopodium quinoa) is a seed crop native to the Andes, that can be used in a variety of food product in a similar manner to cereals. Unlike most plants, quinoa contains protein with a balanced amino acid profile. This makes it an interesting raw material for e.g. dairy product substitutes, a growing market in Europe and U.S. Quinoa can however have unpleasant off-flavours when processed into formulated products. One means of improving the palatability is seed germination. Also, the increased activities of hydrolytic enzymes can have a beneficial influence in food processing. In this thesis, the germination pattern of quinoa was studied, and the influence of quinoa malt was evaluated in a model product. Additionally, to explore its potential for dairy-type products, quinoa protein was isolated from an embryo-enriched milling fraction of non-germinated quinoa and tested for functional and gelation properties. Quinoa seeds imbibed water very rapidly, and most seeds showed radicle protrusion after 8-9 h. The α-amylase activity was very low, and started to increase only after 24 hours of germination in the starchy perisperm. Proteolytic activity was very high in dry ungerminated seeds, and increased slightly over 24 h. A significant fraction of this activity was located in the micropylar endosperm. The incorporation of germinated quinoa in gluten-free bread had no significant effect on the baking properties due to low α-amylase activity. Upon acidification with glucono-δ-lactone, quinoa milk formed a structured gel. The gelation behaviour was further studied using a quinoa protein isolate (QPI) extracted from an embryoenriched milling fraction. QPI required a heat-denaturation step to form gel structures. The heating pH influenced the properties drastically: heating at pH 10.5 led to a dramatic increase in solubility, emulsifying properties, and a formation of a fine-structured gel with a high storage modulus (G') when acidified. Heating at pH 8.5 varied very little from the unheated protein in terms of functional properties, and only formed a randomly aggregated coagulum with a low G'. Further study of changes over the course of heating showed that the mechanism of heat-denaturation and aggregation indeed varied largely depending on pH. The large difference in gelation behaviour may be related to the nature of aggregates formed during heating. To conclude, germination for increased enzyme activities may not be feasible, but the structure-forming properties of quinoa protein could possibly be exploited in dairy-type products.