4 resultados para American Baptist Free Mission Society
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
We report a successful ligand- and liquid-free solid state route to form metal pyrophosphates within a layered graphitic carbon matrix through a single step approach involving pyrolysis of previously synthesized organometallic derivatives of a cyclotriphosphazene. In this case, we show how single crystal Mn2P2O7 can be formed on either the micro- or the nanoscale in the complete absence of solvents or solutions by an efficient combustion process using rationally designed macromolecular trimer precursors, and present evidence and a mechanism for layered graphite host formation. Using in situ Raman spectroscopy, infrared spectroscopy, X-ray diffraction, high resolution electron microscopy, thermogravimetric and differential scanning calorimetric analysis, and near-edge X-ray absorption fine structure examination, we monitor the formation process of a layered, graphitic carbon in the matrix. The identification of thermally and electrically conductive graphitic carbon host formation is important for the further development of this general ligand-free synthetic approach for inorganic nanocrystal growth in the solid state, and can be extended to form a range of transition metals pyrophosphates. For important energy storage applications, the method gives the ability to form oxide and (pyro)phosphates within a conductive, intercalation possible, graphitic carbon as host–guest composites directly on substrates for high rate Li-ion battery and emerging alternative positive electrode materials
Resumo:
Comprehensive analysis of the electrical properties, structure and composition of Pt interconnects, developed via mask-less, electron beam induced deposition of the carbon-free Pt precursor, Pt(PF3)4, is presented. The results demonstrate significantly improved electrical performance in comparison with that generated from the standard organometallic precursor, (CH3)3Pt(CpCH3). In particular, the Pt interconnects exhibited perfect ohmic behavior and resistivity that can be diminished to 0.24 × 10−3 Ω cm, which is only one order of magnitude higher than bulk Pt, in comparison to 0.2 Ω cm for the standard carbon-containing interconnects. A maximum current density of 1.87 × 107 A cm−2 was achieved for the carbon-free Pt, compared to 9.44 × 105 A cm−2 for the standard Pt precursor. The enhanced electrical properties of the as-deposited materials can be explained by the absence of large amounts of carbon impurities, and their further improvement by postdeposition annealing in N2. In-situ TEM heating experiments confirmed that the annealing step induces sintering of the Pt nanocrystals and improved crystallinity, which contributes to the enhanced electrical performance. Alternative annealing under reducing conditions resulted in improved performance of the standard Pt interconnects, while the carbon-free deposit suffered electrical and structural breakage due to formation of larger Pt islands
Resumo:
A binder-free cobalt phosphate hydrate (Co3(PO4)2·8H2O) multilayer nano/microflake structure is synthesized on nickel foam (NF) via a facile hydrothermal process. Four different concentrations (2.5, 5, 10, and 20 mM) of Co2+ and PO4–3 were used to obtain different mass loading of cobalt phosphate on the nickel foam. The Co3(PO4)2·8H2O modified NF electrode (2.5 mM) shows a maximum specific capacity of 868.3 C g–1 (capacitance of 1578.7 F g–1) at a current density of 5 mA cm–2 and remains as high as 566.3 C g–1 (1029.5 F g–1) at 50 mA cm–2 in 1 M NaOH. A supercapattery assembled using Co3(PO4)2·8H2O/NF as the positive electrode and activated carbon/NF as the negative electrode delivers a gravimetric capacitance of 111.2 F g–1 (volumetric capacitance of 4.44 F cm–3). Furthermore, the device offers a high specific energy of 29.29 Wh kg–1 (energy density of 1.17 mWh cm–3) and a specific power of 4687 W kg–1 (power density of 187.5 mW cm–3).
“Something isn’t right here”: American exceptionalism and the creative nonfiction of the Vietnam War
Resumo:
In this thesis, I argue that few attempts were as effective in correcting the exceptionalist ethos of the United States than the creative nonfiction written by the veterans and journalists of the Vietnam War. Using critical works on creative nonfiction, I identify the characteristics of the genre that allowed Paul John Eakin to call it ‘a special kind of fiction.’ I summarise a brief history of creative nonfiction to demonstrate how it became a distinctly American form despite its Old World origins. I then claim that it was the genre most suited to the kind of ideological transformation that many hoped to instigate in U.S. society in the aftermath of Vietnam. Following this, the study explores how this “new” myth-making process occurred. I use Tim O’Brien’s If I Die in a Combat Zone and Philip Caputo’s A Rumor of War to illustrate how autobiography/memoir was able to demonstrate the detrimental effect that America’s exceptionalist ideology was having on its population. Utilising narrative and autobiographical theory, I contend that these accounts represented a collective voice which spoke for all Americans in the years after Vietnam. Using Neil Sheehan’s A Bright Shining Lie and C.D.B. Bryan’s Friendly Fire, I illustrate how literary journalism highlighted the hubris of the American government. I contend that while poiesis is an integral attribute of creative nonfiction, by the inclusion of extraneous bibliographic material, authors of the genre could also be seen as creating a literary context predisposing the reader towards an empirical interpretation of the events documented within. Finally, I claim that oral histories were in their essence a synthesis of “everyman” experiences very much in keeping with the American zeitgeist of the early Eighties. Focussing solely on Al Santoli’s Everything We Had, I demonstrate how such polyphonic narratives personalised the history of the Vietnam War.