4 resultados para Ambient Scent

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A methodology for improved power controller switching in mobile Body Area Networks operating within the ambient healthcare environment is proposed. The work extends Anti-windup and Bumpless transfer results to provide a solution to the ambulatory networking problem that ensures sufficient biometric data can always be regenerated at the base station. The solution thereby guarantees satisfactory quality of service for healthcare providers. Compensation is provided for the nonlinear hardware constraints that are a typical feature of the type of network under consideration and graceful performance degradation in the face of hardware output power saturation is demonstrated, thus conserving network energy in an optimal fashion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Though the motivation for developing Ambient Assisted Living (AAL) systems is incontestable, significant challenges exist in realizing the ambience that is essential to the success of such systems. By definition, an AAL system must be omnipresent, tracking occupant activities in the home and identifying those situations where assistance is needed or would be welcomed. Embedded sensors offer an attractive mechanism for realizing ambience as their form factor and harnessing of wireless technologies aid in their seamless integration into pre-existing environments. However, the heterogeneity of the end-user population, their disparate needs and the differing environments in which they inhabit, all pose particular problems regarding sensor integration and management

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emerging healthcare applications can benefit enormously from recent advances in pervasive technology and computing. This paper introduces the CLARITY Modular Ambient Health and Wellness Measurement Platform:, which is a heterogeneous and robust pervasive healthcare solution currently under development at the CLARITY Center for Sensor Web Technologies. This intelligent and context-aware platform comprises the Tyndall Wireless Sensor Network prototyping system, augmented with an agent-based middleware and frontend computing architecture. The key contribution of this work is to highlight how interoperability, expandability, reusability and robustness can be manifested in the modular design of the constituent nodes and the inherently distributed nature of the controlling software architecture.Emerging healthcare applications can benefit enormously from recent advances in pervasive technology and computing. This paper introduces the CLARITY Modular Ambient Health and Wellness Measurement Platform:, which is a heterogeneous and robust pervasive healthcare solution currently under development at the CLARITY Center for Sensor Web Technologies. This intelligent and context-aware platform comprises the Tyndall Wireless Sensor Network prototyping system, augmented with an agent-based middleware and frontend computing architecture. The key contribution of this work is to highlight how interoperability, expandability, reusability and robustness can be manifested in the modular design of the constituent nodes and the inherently distributed nature of the controlling software architecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of size-monodispersed indium nanoparticles via an innovative simultaneous phase transfer and ripening method is reported. The formation of nanoparticles occurs in a one-step process instead of well-known two-step phase transfer approaches. The synthesis involves the reduction of InCl3 with LiBH4 at ambient temperature and although the reduction occurs at room temperature, fine indium nanoparticles, with a mean diameter of 6.4 ± 0.4 nm, were obtained directly in non-polar n-dodecane. The direct synthesis of indium nanoparticles in n-dodecane facilitates their fast formation and enhances their size-monodispersity. In addition, the nanoparticles were highly stable for more than 2 months. The nanoparticles were characterised by dynamic light scattering (DLS), small angle X-ray scattering (SAXS), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared (FT-IR) spectroscopy to determine their morphology, structure and phase purity.