4 resultados para Alzheimers-Disease
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Alzheimer’s disease (AD) is an incurable neurodegenerative disorder, accounting for over 60% of all cases of dementia. The primary risk factor for AD is age, however several genetic and environmental factors are also involved. The pathological characteristics of AD include extracellular deposition of the beta-amyloid peptide (Aβ) and intraneuronal accumulation of neurofibrillary tangles (NFTs) made of aggregated paired helical filaments (PHFs) of the hyperphosphorylated tau protein, along with synaptic loss and neuronal death. There are numerous biochemical mechanisms involved in AD pathogenesis, however the reigning hypothesis points to toxic oligomeric Aβ species as the primary causative factor in a cascade of events leading to neuronal stress and dyshomeostasis that initiate abnormal regulation of tau. The insulin and IGF-1 receptors (IR, IGF-1R) are the primary activators of PI3- K/Akt through which they regulate cell growth, development, glucose metabolism, and learning and memory. Work in our lab and others shows increased Akt activity and phosphorylation of its downstream targets in AD brain, along with insulin and insulin-like growth factor-1 signalling (IIS) dysfunction. This is supported by studies of AD models in vivo and in vitro. Our group and others hypothesise that Aβ activates Akt through IIS to initiate a negative feedback mechanism that desensitises neurons to insulin/IGF-1, and sustains activation of Akt. In this study the functions of endogenous Akt, IR, and the insulin receptor substrate (IRS-1) were examined in relationship to Aβ and tau pathology in the 3xTg-AD mouse model, which contains three mutant human transgenes associated with familial AD or dementia. The 3xTg-AD mouse develops Aβ and tau pathology in a spatiotemporal manner that best recapitulates the progression of AD in human brain. Western blotting and immunofluorescent microscopy techniques were utilised in vivo and in vitro, to examine the relationship between IIS, Akt, and AD pathology. I first characterised in detail AD pathology in 3xTg-AD mice, where an age-related accumulation of intraneuronal Aβ and tau was observed in the hippocampal formation, amygdala, and entorhinal cortex, and at late stages (18 months), extracellular amyloid plaques and NFTs, primarily in the subiculum and the CA1 layer of the hippocampal formation. Increased activity of Akt, detected with antibody to phosphoSer473-Akt, was increased in 3xTg-AD mice compared to age-matched non-transgenic mice (non-Tg), and in direct correlation to the accumulation of Aβ and tau in neuronal somatodendritic compartments. Akt phosphorylates tau at residue Ser214 within a highly specific consensus sequence for Akt phosphorylation, and phosphoSer214-tau strongly decreases microtubule (MT) stabilisation by preventing tau-MT binding. PhosphoSer214-tau increased concomitantly with this in the same age-related and region-specific fashion. Polarisation of tau phosphorylation was observed, where PHF-1 (tauSer396/404) and phosphoSer214-tau both appeared early in 3xTg-AD mice in distinct neuronal compartments: PHF-1 in axons, and phosphoSer214-tau in neuronal soma and dendrites. At 18 months, phosphoSer214-tau strongly colocalised with NFTs positive for the PHF- 1 and AT8 (tauSer202/Thr205) phosphoepitopes. IR was decreased with age in 3xTg-AD brain and in comparison to age-matched non-Tg, and this was specific for brain regions containing Aβ, tau, and hyperactive Akt. IRS-1 was similarly decreased, and both proteins showed altered subcellular distribution. Phosphorylation of IRS-1Ser312 is a strong indicator of IIS dysfunction and insulin resistance, and was increased in 3xTg-AD mice with age and in relation to pathology. Of particular note was our observation that abberant IIS and Akt signalling in 3xTg-AD brain related to Aβ and tau pathology on a gross anatomical level, and specifically localised to the brain regions and circuitry of the perforant path. Finally, I conducted a preliminary study of the effects of synthetic Aβ oligomers on embryonic rat hippocampus neuronal cultures to support these results and those in the literature. Taken together, these novel findings provide evidence for IIS and Akt signal transduction dysfunction as the missing link between Aβ and tau pathogenesis, and contribute to the overall understanding of the biochemical mechanisms of AD.
Resumo:
Post-translational modification of the γ-secretase protease complexes and their substrates has an important role in controlling receptor-initiated signalling events, which are critically important in the pathogenesis of cancer, inflammatory and Alzheimer’s disease. Our lab has previously characterised an interaction between TRAF6 and presenilin-1, which lead to the identification of interleukin-1 (IL-1) receptor type 1 (IL-1R1) and Toll-like receptor-4 (TLR4) as novel γ-secretase substrates. Subsequently our group showed that TRAF6 promoted ubiquitination and γ-secretase cleavage of IL-1R1. The aim of this project is to study the association between TRAF6 and the presenilins, the critical γ-secretase complex components, and to determine the functional importance of TRAF6-mediated ubiquitination of γ-secretase substrates. Firstly, we show that the full-length presenilins are novel substrates of TRAF6-mediated Lysine-63-linked polyubiquitination. Secondly, we show that co-expression of TRAF6 and the presenilins increases the stability and alters the turnover of the presenilins. Thirdly, we reveal that TRAF6-mediated ubiquitination of presenilin does not affect γ-secretase enzyme activity, but may regulate the full-length presenilin functions such as ER Ca2+ signalling. Previously, we have reported IL-1R1 as a novel substrate of TRAF6-mediated ubiquitination. In this study, we identified five lysine residues in the IL-1R1 intracellular domain targeted by TRAF6-mediated polyubiquitination. Furthermore, mutagenesis of these five lysine residues led to decreased IL-1R1 cell surface expression, precluded the ectodomain shedding and attenuated the responsiveness to IL-1β stimulation, demonstrating the critical role of TRAF6 in IL-1R1 trafficking.
Resumo:
The γ-secretase protease complexes and associated regulated intramembrane proteolysis play an important role in controlling receptor-mediated intracellular signalling events, which have a central role in Alzheimer’s disease, cancer progression and immune surveillance. It has previously been reported that the Interleukin-1 receptor, type 1, (IL-1R1) is a substrate for regulated intramembrane proteolysis, mediated by presenilin (PS)-dependent γ-secretase activity. The aims of this project were twofold. Firstly, to determine the conservation of regulated intramembrane proteolysis as a physiological occurrence amongst other cytokine receptors. In this regard, similar to IL-1R1, we identified the Tumour necrosis factor receptor type 1 (TNFR1) and the Toll like receptor 4 (TLR4) as novel γ-secretase substrates. Secondly, given that the diversity of signalling events mediated by the IL-1R1, TLR4 and TNFR1 are spatially segregated, we investigated the spatial distribution, subcellular trafficking and subcellular occurrence of regulated intramembrane proteolysis of IL-1R1, TLR4 and TNFR1. Using dynasore an inhibitor of clathrin-dependent receptor endocytosis, both ectodomain shedding and γ-secretase-mediated cleavage of IL-1R1 were observed post-internalization. In contrast, TNFR-1 underwent ectodomain shedding at the cell surface followed by endosomal γ-secretase-mediated cleavage. Furthermore, immortalised fibroblasts from PS1-deficient mice showed impaired γ-secretasemediated cleavage of IL-1R1 and TNFR1, indicating that both are cleaved by PS1-and not PS2-containing γ-secretase complexes. Subcellular fractionation and immunofluorescence studies revealed that the γ-secretase generated IL-1R1 ICD translocates to the nucleus on IL-1β stimulation. These observations further demonstrate the novel PS-dependent means of modulating IL-1β, LPS and TNFα- mediated immune responses by regulating IL-1R1/TLR4/TNFR1 protein levels within the cells.
Resumo:
Alzheimer’s Disease and other dementias are one of the most challenging illnesses confronting countries with ageing populations. Treatment options for dementia are limited, and the costs are significant. There is a growing need to develop new treatments for dementia, especially for the elderly. There is also growing evidence that centrally acting angiotensin converting enzyme (ACE) inhibitors, which cross the blood-brain barrier, are associated with a reduced rate of cognitive and functional decline in dementia, especially in Alzheimer’s disease (AD). The aim of this research is to investigate the effects of centrally acting ACE inhibitors (CACE-Is) on the rate of cognitive and functional decline in dementia, using a three phased KDD process. KDD, as a scientific way to process and analysis clinical data, is used to find useful insights from a variety of clinical databases. The data used are from three clinic databases: Geriatric Assessment Tool (GAT), the Doxycycline and Rifampin for Alzheimer’s Disease (DARAD), and the Qmci validation databases, which were derived from several different geriatric clinics in Canada. This research involves patients diagnosed with AD, vascular or mixed dementia only. Patients were included if baseline and end-point (at least six months apart) Standardised Mini-Mental State Examination (SMMSE), Quick Mild Cognitive Impairment (Qmci) or Activities Daily Living (ADL) scores were available. Basically, the rates of change are compared between patients taking CACE-Is, and those not currently treated with CACE-Is. The results suggest that there is a statistically significant difference in the rate of decline in cognitive and functional scores between CACE-I and NoCACE-I patients. This research also validates that the Qmci, a new short assessment test, has potential to replace the current popular screening tests for cognition in the clinic and clinical trials.