6 resultados para Airways inflammation

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inflammation is a complex and highly organised immune response to microbes and tissue injury. Recognition of noxious stimuli by pathogen recognition receptor families including Toll-like receptors results in the expression of hundreds of genes that encode cytokines, chemokines, antimicrobials and regulators of inflammation. Regulation of TLR activation responses is controlled by TLR tolerance which induces a global change in the cellular transcriptional expression profile resulting in gene specific suppression and induction of transcription. In this thesis the plasticity of TLR receptor tolerance is investigated using an in vivo, transcriptomics and functional approach to determine the plasticity of TLR tolerance in the regulation of inflammation. Firstly, using mice deficient in the negative regulator of TLR gene transcription, Bcl-3 (Bcl-3-/-) in a model of intestinal inflammation, we investigated the role of Bcl-3 in the regulation of intestinal inflammatory responses. Our data revealed a novel role for Bcl-3 in the regulation of epithelial cell proliferation and regeneration during intestinal inflammation. Furthermore this data revealed that increased Bcl-3 expression contributes to the development of inflammatory bowel disease (IBD). Secondly, we demonstrate that lipopolysaccharide tolerance is transient and recovery from LPS tolerance results in polarisation of macrophages to a previously un-described hybrid state (RM). In addition, we identified that RM cells have a unique transcriptional profile with suppression and induction of genes specific to this polarisation state. Furthermore, using a functional approach to characterise the outcomes of TLR tolerance plasticity, we demonstrate that cytokine transcription is uncoupled from cytokine secretion in macrophages following recovery from LPS tolerance. Here we demonstrate a novel mechanism of regulation of TLR tolerance through suppression of cytokine secretion in macrophages. We show that TNF-α is alternatively trafficked towards a degradative intracellular compartment. These studies demonstrate that TLR tolerance is a complex immunological response with the plasticity of this state playing an important role in the regulation of inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Gastro-Intestinal (GI) tract is a unique region in the body. Our innate immune system retains a fine homeostatic balance between avoiding inappropriate inflammatory responses against the myriad commensal microbes residing in the gut while also remaining active enough to prevent invasive pathogenic attack. The intestinal epithelium represents the frontline of this interface. It has long been known to act as a physical barrier preventing the lumenal bacteria of the gastro-intestinal tract from activating an inflammatory immune response in the immune cells of the underlying mucosa. However, in recent years, an appreciation has grown surrounding the role played by the intestinal epithelium in regulating innate immune responses, both in the prevention of infection and in maintaining a homeostatic environment through modulation of innate immune signalling systems. The aim of this thesis was to identify novel innate immune mechanisms regulating inflammation in the GI tract. To achieve this aim, we chose several aspects of regulatory mechanisms utilised in this region by the innate immune system. We identified several commensal strains of bacteria expressing proteins containing signalling domains used by Pattern Recognition Receptors (PRRs) of the innate immune system. Three such bacterial proteins were studied for their potentially subversive roles in host innate immune signalling as a means of regulating homeostasis in the GI tract. We also examined differential responses to PRR activation depending on their sub-cellular localisation. This was investigated based on reports that apical Toll-Like Receptor (TLR) 9 activation resulted in abrogation of inflammatory responses mediated by other TLRs in Intestinal Epithelial Cells (IECs) such as basolateral TLR4 activation. Using the well-studied invasive intra-cellular pathogen Listeria monocytogenes as a model for infection, we also used a PRR siRNA library screening technique to identify novel PRRs used by IECs in both inhibition and activation of inflammatory responses. Many of the PRRs identified in this screen were previously believed not to be expressed in IECs. Furthermore, the same study has led to the identification of the previously uncharacterised TLR10 as a functional inflammatory receptor of IECs. Further analysis revealed a similar role in macrophages where it was shown to respond to intracellular and motile pathogens such as Gram-positive L.monocytogenes and Gram negative Salmonella typhimurium. TLR10 expression in IECs was predominantly intracellular. This is likely in order to avoid inappropriate inflammatory activation through the recognition of commensal microbial antigens on the apical cell surface of IECs. Moreover, these results have revealed a more complex network of innate immune signalling mechanisms involved in both activating and inhibiting inflammatory responses in IECs than was previously believed. This contribution to our understanding of innate immune regulation in this region has several direct and indirect benefits. The identification of several novel PRRs involved in activating and inhibiting inflammation in the GI tract may be used as novel therapeutic targets in the treatment of disease; both for inducing tolerance and reducing inflammation, or indeed, as targets for adjuvant activation in the development of oral vaccines against pathogenic attack.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The role of Fas (CD95) and its ligand, Fas ligand (FasL/CD95L), is poorly understood in the intestine. Whilst Fas is best studies in terms of its function in apoptosis, recent studies suggest that Fas ligation may mediate additional, non-apoptotic functions such as inflammation. Toll like Receptors (TLRs) play an important role in mediating inflammation and homeostasis in the intestine. Recent studies have shown that a level of crosstalk exists between the Fas and TLR signalling pathways but this has not yet been investigated in the intestine. Aim: The aim of this study was to evaluate potential cross-talk between TLRs and Fas/FasL system in intestinal cancer cells. Results: Treatment with TLR4 and TLR5 ligands, but not ligands for TLR2 and TLR9 increased the expression of Fas and FasL in intestinal cancer cells in vitro. Consistent with this, expression of Fas and FasL was reduced in the distal colon tissue from germ-free (GF), TLR4 and TLR5 knock-out (KO) mice but was unchanged in TLR2KO tissue, suggesting that intestinal cancer cells display a degree of specificity in their ability to upregulate Fas and FasL expression in response to TLR ligation. Expression of both Fas and FasL was significantly reduced in TRIF KO tissue, indicating that signalling via TRIF by TLR4 and TLR5 agonists may be responsible for the induction of Fas and FasL expression in intestinal cancer cells. In addition, modulating Fas signalling using agonistic anti-Fas augmented TLR4 and TLR5-mediated tumour necrosis factor alpha (TNFα) and interleukin 8 (IL)-8 production by intestinal cancer cells, suggesting crosstalk occurs between these receptors in these cells. Furthermore, suppression of Fas in intestinal cancer cells reduced the ability of the intestinal pathogens, Salmonella typhimurium and Listeria monocytogenes to induce the expression of IL-8, suggesting that Fas signalling may play a role in intestinal host defence against pathogens. Inflammation is known to be important in colon tumourigenesis and Fas signalling on intestinal cancer cells has been shown to result in the production of inflammatory mediators. Fas-mediated signalling may therefore play a role in colon cancer development. Suppression of tumour-derived Fas by 85% led to a reduction in the tumour volume and changes in tumour infiltrating macrophages and neutrophils. TLR4 signalling has been shown to play a role in colon cancer via the recruitment and activation of alternatively activated immune cells. Given the crosstalk seen between Fas and TLR4 signalling in intestinal cancer cells in vitro, suppressing Fas signalling may enhance the efficacy of TLR4 antagonism in vivo. TLR4 antagonism resulted in smaller tumours with fewer infiltrating neutrophils. Whilst Fas downregulation did not significantly augment the ability of TLR4 antagonism to reduce the final tumour volume, Fas suppression may augment the anti-tumour effects of TLR4 antagonism as neutrophil infiltration was further reduced upon combinatorial treatment. Conclusion: Together, this study demonstrates evidence of a new role for Fas in the intestinal immune response and that manipulating Fas signalling has potential anti-tumour benefit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background/Aim: It has been demonstrated that a number of pathologies occur as a result of dysregulation of the immune system. Whilst classically associated with apoptosis, the Fas (CD95) signalling pathway plays a role in inflammation. Studies have demonstrated that Fas activation augments TLR4-mediated MyD88-dependent cytokine production. Studies have also shown that the Fas adapter protein FADD is required for RIG-I-induced IFNβ production. As a similar signalling pathway exists between RIG-I, TLR3 and the MyD88- independent of TLR4, we hypothesised that Fas activation may modulate both TLR3- and TLR4-induced cytokine production. Results: Fas activation reduced poly I:C-induced IFNβ, IL-8, IL-10 and TNFα production whilst augmenting poly I:C-, poly A:U- and Sendai virus-induced IP-10 production. TLR3-, RIG-I- and MDA5-induced IP-10 luciferase activation were inhibited by the Fas adapter protein FADD using overexpression studies. Poly I:C-induced phosphorylation of p-38 and JNK MAPK were reduced by Fas activation. Overexpression of FADD induced AP-1 luciferase activation. Point mutations in the AP-1 binding site enhanced poly I:C-induced IP- 10 production. LPS-induced IL-10, IL-12, IL-8 and TNFα production were enhanced by Fas activation, whilst reducing LPS-induced IFNβ production. Absence of FADD using FADD-/- MEFs resulted in impaired IFNβ production. Overexpression studies using FADD augmented TLR4-, MyD88- and TRIF-induced IFNβ luciferase activation. Overexpression studies also suggested that enhanced TLR4-induced IFNβ production was independent of NFκB activation. Conclusion: Viral-induced IP-10 production is augmented by Fas activation by reducing the phosphorylation of p-38 and JNK MAPKs, modulating AP-1 activation. The Fas adapterprotein FADD is required for TLR4-induced IFNβ production. Studies presented here demonstrate that the Fas signalling pathway can therefore modulate the immune response. Our data demonstrates that this modulatory effect is mediated by its adapter protein FADD, tailoring the immune response by acting as a molecular switch. This ensures the appropriate immune response is mounted, thus preventing an exacerbated immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms governing fetal development follow a tightly regulated pattern of progression such that interference at any one particular stage is likely to have consequences for all other stages of development in the physiological system that has been affected thereafter. These disturbances can take the form of many different events but two of the most common and widely implicated in causing detrimental effects to the developing fetus are maternal immune activation (MIA) and maternal stress. MIA has been shown to cause an increase in circulating proinflammatory cytokines in both the maternal and fetal circulation. This increase in proinflammatory mediators in the fetus is thought to occur by fetal production rather than through exchange between the maternal-fetal interface. In the case of maternal stress it is increased levels of stress related hormones such as cortisol/corticosterone which is thought to elicit the detrimental effects on fetal development. In the case of both maternal infection and stress the timing and nature of the insult generally dictates the severity and type of effects seen in affected offspring. We investigated the effect of a proinflammatory environment on neural precursor cells of which exposure resulted in a significant decrease in the normal rate of proliferation of NPCs in culture but did not have any effect on cell survival. These effects were seen to be age dependent. Using a restraint stress model we investigated the effects of prenatal stress on the development of a number of different physiological systems in the same cohort of animals. PNS animals exhibited a number of aberrant changes in cardiovascular function with altered responses to stress and hypertension, modifications in respiratory responses to hypercapnic and hypoxic challenges and discrepancies in gastrointestinal innervation. Taken together these findings suggest that both maternal infection and maternal stress are detrimental to the normal development of the fetus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asthma is a chronic respiratory disease whose prevalence is increasing in the western world. Recently research has begun to focus on the role the microbiome plays in asthma pathogenesis in the hope of further understanding this respiratory disorder. Considered sterile until recently, the lungs have revealed themselves to contain a unique microbiota. A shift towards molecular methods for the quantification and sequencing of microbial DNA has revealed that the airways harbour a unique microbiota with apparent, reproducible differences present between healthy and diseased lungs. There is a hope that in classifying the microbial load of the asthmatic airway an insight may be afforded as to the possible role pulmonary microbes may have in propagating an asthmatic airway response. This could potentially pave the way for new therapeutic strategies for the treatment of chronic lung conditions such as asthma.