7 resultados para Adhesion of cells

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glycolysis, glutaminolysis, the Krebs cycle and oxidative phosphorylation are the main metabolic pathways. Exposing cells to key metabolic substrates (glucose, glutamine and pyruvate); investigation of the contribution of substrates in stress conditions such as uncoupling and hypoxia was conducted. Glycolysis, O2 consumption, O2 and ATP levels and hypoxia inducible factor (HIF) signalling in PC12 cells were investigated. Upon uncoupling with FCCP mitochondria were depolarised similarly in all cases, but a strong increase in respiration was only seen in the cells fed on glutamine with either glucose or pyruvate. Inhibition of glutaminolysis reversed the glutamine dependant effect. Differential regulation of the respiratory response to FCCP by metabolic environment suggests mitochondrial uncoupling has a potential for substrate-specific inhibition of cell function. At reduced O2 availability (4 % and 0 % O2), cell bioenergetics and local oxygenation varied depending on the substrate composition. Results indicate that both supply and utilisation of key metabolic substrates can affect the pattern of HIF-1/2α accumulation by differentially regulating iO2¬, ATP levels and Akt/Erk/AMPK pathways. Inhibition of key metabolic pathways can modulate HIF regulatory pathways, metabolic responses and survival of cancer cells in hypoxia. Hypoxia leads to transcriptional activation, by HIF, of pyruvate dehydrogenase (PDH) kinase which phosphorylates and inhibits PDH, a mitochondrial enzyme that converts pyruvate into acetyl-CoA. The levels of PDH (total and phosphorylated), PDH kinase and HIF-1α were analysed in HCT116 and HCT116 SCO2-/- (deficient in complex IV of the respiratory chain) grown under 20.9 % and 3 % O2. Data indicate that regulation of PDH can occur in a manner independent of the HIF-1/PDH kinase 1 axis, mitochondrial respiration and the demand for acetyl-CoA. Collectively these results can be applied to many diseases; reduced nutrient supply and O2 during ischemia/stroke, hypoglycaemia in diabetes mellitus and cancer associated changes in uncoupling protein expression levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statins are a class of drug that inhibits cholesterol biosynthesis, and are used to treat patients with high serum cholesterol levels. They exert this function by competitively binding to the enzyme 3-hydroxy-3-methylglutaryl-CoenzymeA reductase (HMGR), which catalyses the formation of mevalonate, a rate-limiting step in cholesterol biosynthesis. In addition, statins have what are called “pleiotropic effects”, which include the reduction of inflammation, immunomodulation, and antimicrobial effects. Statins can also improve survival of patients with sepsis and pneumonia. Cystic fibrosis (CF) is the most common recessive inherited disease in the Caucasian population, which is characterised by factors including, but not limited to, excessive lung inflammation and increased susceptibility to infection. Therefore, the overall objective of this study was to examine the effects of statins on CFassociated bacterial pathogens and the host response. In this work, the prevalence of HMGR was examined in respiratory pathogens, and several CF-associated pathogens were found to possess homologues of this enzyme. HMGR homology was analysed in Staphylococcus aureus, Burkholderia cenocepacia and Streptococcus pneumoniae, and the HMGR of B. cenocepacia was found to have significant conservation to that of Pseudomonas mevalonii, which is the most widely-characterised bacterial HMGR. However, in silico analysis revealed that, unlike S. aureus and S. pneumoniae, B. cenocepacia did not possess homologues of other mevalonate pathway proteins, and that the HMGR of B. cenocepacia appeared to be involved in an alternative metabolic pathway. The effect of simvastatin was subsequently tested on the growth and virulence of S. aureus, B. cenocepacia and S. pneumoniae. Simvastatin inhibited the growth of all 3 species in a dose-dependent manner. In addition, statin treatment also attenuated biofilm formation of all 3 species, and reduced in vitro motility of S. aureus. Interestingly, simvastatin also increased the potency of the aminoglycoside antibiotic gentamicin against B. cenocepacia. The impact of statins was subsequently tested on the predominant CF-associated pathogen Pseudomonas aeruginosa, which does not possess a HMGR homologue. Mevastatin, lovastatin and simvastatin did not influence the growth of this species. However, sub-inhibitory statin concentrations reduced the swarming motility and biofilm formation of P. aeruginosa. The influence of statins was also examined on Type 3 toxin secretion, quorum sensing and chemotaxis, and no statin effect was observed on any of these phenotypes. Statins did not appear to have a characteristic effect on the P. aeruginosa transcriptome. However, a mutant library screen revealed that the effect of statins on P. aeruginosa biofilm was mediated through the PvrR regulator and the Cup fimbrial biosynthesis genes. Furthermore, proteomic analysis demonstrated that 6 proteins were reproducibly induced by simvastatin in the P. aeruginosa swarming cells. The effect of statins on the regulation of the host-P. aeruginosa immune response was also investigated. Statin treatment increased expression of the pro-inflammatory cytokines IL-8 and CCL20 in lung epithelial cells, but did not attenuate P. aeruginosa-mediated inflammatory gene induction. In fact, simvastatin and P. aeruginosa caused a synergistic effect on CCL20 expression. The expression of the transcriptional regulators KLF2 and KLF6 was also increased by statins and P. aeruginosa, with the induction of KLF6 by simvastatin proving to be a novel effect. Interestingly, both statins and P. aeruginosa were capable of inducing alternative splicing of KLF6. P. aeruginosa was found to induce KLF6 alternative splicing by way of the type 3 secreted toxin ExoS. In addition, a mechanistic role was elucidated for KLF6 in the lung, as it was determined that statin-mediated induction of this protein was responsible for the induction of the host response genes CCL20 and iNOS. Moreover, statin treatment caused a slight increase in infection-related cytotoxicity, and increased bacterial adhesion to cells. Taken together, these data demonstrate that statins can reduce the virulence of CFassociated bacterial pathogens and alter host response effectors. Furthermore, novel statin effectors were identified in both bacterial and host cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The development of procedures and media for the micropropagation of B. rex are described. Media for the production of plantlets from a number of other Begonia hybrids are also provided. Growth analysis data is given for plants produced in vivo from leaf cuttings and in vitro from mature leaf petioles and immature leaves derived from singly and multiply recycled axenic plantlets. No significant difference was found in phenotype or quantitative vegetative characters for any of the populations assessed. The results presented from studies on the development of broad spectrum media for the propagation of a number of B. rex cultivars using axenic leaf explants on factorial combinations of hormones illustrate the major influence played by the genotype on explant response in vitro and suggest media on which a range of B. rex cultivars may be propagated. Procedures for in vitro irradiation and colchicine treatments to destabilize the B. rex genome have also been described. Variants produced from these treatments indicate the utility of in vitro procedures for the expression of induced somatic variation. Colour variants produced from irradiation treatment have been cultured and prove stable. Polyploids produced as variants from irradiation treatment have been subcultured but prove unstable. Media for the induction and proliferation of callus are outlined. The influence of callus subculture and aging on the stability of the B. rex genome is assessed by chromosomal analysis of cells, in vitro and in regenerants. The B. rex genome is destabilized in callus culture but attenuation of variation occurs on regeneration. Diploid cell lines are maintained in callus subcultures and supplementation of regenerative media with high cytokinin concentrations, casein hydrolysate or adenine failed to produce variants. Callus aging however resulted in the production of polyploids. The presence and expression of pre-existing somatic variation in B. rex pith and root tissue is assessed and polyploids have been produced from pith tissues cultured in vitro. The stability of the B. rex genome and the application of tissue culture to micropropagation and breeding of B. rex are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cancer is a global problem. Despite the significant advances made in recent years, a definitively effective therapeutic has yet to be developed. Oncolytic virology has fallen back into favour for the treatment of cancer with several viruses and viral vectors currently under investigation including vesicular stomatitis virus (VSV), adenovirus vectors and herpes simplex virus (HSV) vectors. Reovirus has an advantage over many viral vectors in that its wild-type form is non-pathogenic and will selectively infect transformed cells, particularly those mutated in the Ras pathway. These advantages make Reovirus an ideal candidate as a safe and non-toxic therapeutic. The aim of the first part of this study was to determine the effect, if any, of Reovirus on cell lines derived from cancers of the gastrointestinal tract. These cancers, particularly those of the oesophagus and stomach, have extremely poor prognoses and little improvement has been seen in survival of these patients in recent years. Reovirus as a single therapy showed promising results in cell lines of oesophageal, gastric and colorectal origin. Further study of partially resistant cell lines using a combination of Reovirus and conventional therapies, either chemotherapy or radiation, showed that a multi-modal approach to therapy is possible with Reovirus and no antagonism between Reovirus and other treatments was observed. The second part of this study focused on investigating a novel use of Reovirus in an in vivo setting. Cancer vaccination or the use of vaccines in cancer therapy is gaining momentum and success has been seen both in a prophylactic approach and a therapeutic approach. A cell-based Reovirus vaccine was used in both these approaches with encouraging success. When used as a prophylactic vaccine tumour development was subsequently inhibited even upon exposure to a tumorigenic dose of cells. The use of the cell-based Reovirus vaccine as a therapeutic for established tumours showed significant delay in tumour growth and a prolongation of survival in all models. This study has proven that Reovirus is an effective therapeutic in a range of cancers and the successful use of a cell-based Reovirus vaccine leads the way for new advancements in cancer immunotherapy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PTEN‐induced kinase 1 (PINK1) was identified initially in cancer cells as a gene up‐regulated by overexpression of the central tumour suppressor, PTEN. Loss‐of‐function mutations in PINK1 were discovered subsequently to cause autosomal recessive Parkinsonʹs disease (ARPD). Despite much research focusing on the proposed mechanism(s) through which loss of PINKI function causes neurodegeneration, few studies have focused on a direct role for this serine/threonine kinase in cancer biology. The focus of this thesis was to examine a direct role for PINK1 function in tumourigenesis. Initial studies showed that loss of PINK1 reduces tumour‐associated phenotypes including cell growth, colony formation and invasiveness, in several cell types in vitro, indicating a pro‐tumourigenic role for PINK1 in cancer. Furthermore, results revealed for the first time that PINK1 deletion, examined in mouse embryonic fibroblasts (MEFS) from PINK1 knock‐out animals, causes cell cycle defects, whereby cells arrest at in cytokinesis, giving rise to a highly significant increase in the number of multinucleated cells. This results in several key changes in the expression profile of cell cycle associated protein. In addition, PINK1‐deficient MEFs were found to resist cell cycle exit, with a proportion of cells remaining in proliferative phases upon removal of serum. The ability of cells to progress through mitosis conferred by PINK1 expression was independent of its kinase activity, while the cell cycle exit following serum withdrawal was kinase dependent. Investigations into the mechanism through which loss of PINK1 function gives rise to cell cycle defects revealed that dynamin related protein 1 (Drp1)‐mediated mitochondrial fission is enhanced in PINK1‐ deficient MEFs, and that increased expression of Drp1 on mitochondria and activation of Drp1 is highly significant in PINK1‐deficient multinucleated cells. Deregulated and increased levels and activation of mitochondrial fission via Drp1 was shown to be a major feature of cell cycle defects caused by PINK1 deletion, both during progression through G2/M and cell cycle exit following serum removal. Altered PINK1 localisation was also observed during progression of mitosis, and upon serum deprivation. Thus, PINK1 dissociated from the mitochondria during the mitotic phases and localised to mitochondria upon serum withdrawal. During serum withdrawal deletion of PINK1 disabled the ability of MEFs to increase mitochondrial membrane potential (ΔΨm), and increase autophagy. This was co‐incident with increased mitochondrial fission, and increased localisation of Drp1 to mitochondria following serum deprivation. Together, this indicates an inability of PINK1‐negative cells to respond protectively to this stress‐induced state, primarily via impaired mitochondrial function. In contrast, PINK1 overexpression was found to protect cells from DNA damage following treatment with oxidants. In addition, deletion of PINK1 blocked the ability of cells to re‐enter the cell cycle in response to insulin‐like growth factor‐1 (IGF‐1), a major cancer promoting agonistwhich acts primarily via PI3‐kinase/Akt activation. Furthermore, PINK1 mRNA expression was significantly increased following serum deprivation of MCF‐7 cells, and this was rendered more significant upon additional inhibition of PI3‐kinase. Conversely, IGF‐1 activation of PI3‐kinase/Akt causes a time‐dependent and significant reduction of PINK1 mRNA expression that was PI3‐kinase dependent. Together these results indicate that PINK1 expression is necessary for IGF‐1 signalling and is regulated reciprocally in the absence and presence of IGF‐1, via PI3‐kinase/Akt, a signalling system which has major tumour‐promoting capacity in cancer cell biology. The results of this thesis indicate PINK1 is a candidate tumour-promoting gene which has a significant function in the regulation of the cell cycle, and growth factor responses, at key cell cycle checkpoints, namely, during progression through G2/M and during exit of the cell cycle following removal of serum. Furthermore, the results reveal that the regulation of mitochondrial fission and Drp1 function is mechanistically important in the regulation of cell cycle control by PINK1. As deregulation of the cell cycle is linked to both tumourigenesis and neurodegeneration, the findings of this thesis are of importance not just for understanding cancer biology, but also in the context of PINK1‐associated neurodegeneration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bioluminescence is the production of light by living organisms as a result of a number of enzyme catalysed reactions caused by enzymes termed luciferases. The lux genes responsible for the emission of light can be cloned from one bioluminescent microorganism into one that is not bioluminescent. The light emitted can be monitored and quantified and will provide information on the metabolic activity, quantity and location of cells in a particular environment, in real-time. The primary aim of this thesis was to investigate and identify several food industry related applications of lux-tagged microorganisms. The first aim was to monitor a lux-tagged Cronobacter sakazakii in reconstituted infant milk formula, in realtime. The second aim was to investigate a bioluminescent-based early warning system for starter culture disruption by bacteriophages and antibiotic residues. The third of this thesis was to examine the use of a bioluminescent-based assay to test the activity of bioengineered Nisin derivatives M21V and S29A against foodborne pathogens in laboratory media and selected foods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The main objective of this thesis is to outline the synthetic chemistry involved in the preparation of a range of novel lanostane and cholestane derivatives, and subsequent investigation into their biological activity in cancer cells. The biological results obtained throughout the project have driven the strategic synthesis of new compounds, in an effort to optimise the anti cancer potential of lanostane and cholestane derivatives. The first chapter begins with an overview of steroidal compounds and details a literature review of the natural sources of these moieties, as well as their biosynthesis and reported synthetic derivatives. The biological activity of interesting natural and synthetic analogues is also discussed. In addition, an insight into some currently prescribed pharmaceutical compounds, with functional groups relevant to this project, is presented. The second chapter discusses the methods employed for the synthesis of these novel lanostane and cholestane derivatives, and comprises three main sections. Firstly, various oxidation products of lanosterol are synthesised, mainly via epoxidations of the C-8,9 and C- 24,25 alkenes, and also allylic oxidations at these positions. Secondly, amine derivatives of lanosterol are formed by cleaving the lanostane side chain, thereby yielding a new cholestane nucleus, and performing several reductive aminations on the resulting key aldehyde intermediates. Various amines such as piperidine, morpholine, diethylamine and aniline are employed in the reductive amination reactions to yield novel cholestane steroids with amine side chains. Finally, starting from stigmasterol and proceeding with the same methodology of cleaving the steroidal side chain and subsequently performing reductive aminations, novel cholestane derivatives of the biologically active amines are synthesised. The cytotoxicity of these compounds against CaCo-2 and U937 cell lines is presented in terms of percentage viability of cells, IC50 value and apoptosis. The MTT assay is used to determine the percentage viability of cells, and the IC50 data is generated from the MTT results. Apoptosis is measured in terms of fold increase relative to a carrier control. In summary, the compounds formed are discussed in terms of chemical synthesis, spectroscopic interpretation and biological activity. The main reaction pathways involved in the chemistry within this project are various oxidations and reductive amination. The final chapter is a detailed account of the full experimental procedures for the compounds synthesised during this work, including characterisation using spectroscopic and analytical data.