3 resultados para Additives
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The burden of foodborne disease has large economic and social consequences worldwide. Despite strict regulations, a number of pathogens persist within the food environment, which is greatly contributed to by a build-up of resistance mechanisms and also through the formation of biofilms. Biofilms have been shown to be highly resistant to a number of antimicrobials and can be extremely difficult to remove once they are established. In parallel, the growing concern of consumers regarding the use of chemically derived antimicrobials within food has led to a drive toward more natural products. As a consequence, the use of naturally derived antimicrobials has become of particular interest. In this study we investigated the efficacy of nisin A and its bioengineered derivative M21A in combination with food grade additives to treat biofilms of a representative foodborne disease isolate of Listeria monocytogenes. Investigations revealed the enhanced antimicrobial effects, in liquid culture, of M21A in combination with citric acid or cinnamaldehyde over its wild type nisin A counterpart. Subsequently, an investigation was conducted into the effects of these combinations on an established biofilm of the same strain. Nisin M21A (0.1 μg/ml) alone or in combination with cinnamaldehyde (35 μg/ml) or citric acid (175 μg/ml) performed significantly better than combinations involving nisin A. All combinations of M21A with either citric acid or cinnamaldehyde eradicated the L. monocytogenes biofilm (in relation to a non-biofilm control). We conclude that M21A in combination with available food additives could further enhance the antimicrobial treatment of biofilms within the food industry, simply by substituting nisin A with M21A in current commercial products such as Nisaplin® (Danisco, DuPont).
Resumo:
Chitosan gel films were successfully obtained by evaporation cast from chitosan solutions in aqueous acidic solutions of organic acids (lactic and acetic acid) as gel film bandages, with a range of additives that directly influence film morphology and porosity. We show that the structure and composition of a wide range of 128 thin gel films, is correlated to the antimicrobial properties, their biocompatibility and resistance to biodegradation. Infrared spectroscopy and solid-state 13C nuclear magnetic resonance spectroscopy was used to correlate film molecular structure and composition to good antimicrobial properties against 10 of the most prevalent Gram positive and Gram negative bacteria. Chitosan gel films reduce the number of colonies after 24 h of incubation by factors of ∼105–107 CFU/mL, compared with controls. For each of these films, the structure and preparation condition has a direct relationship to antimicrobial activity and effectiveness. These gel film bandages also show excellent stability against biodegradation with lysozyme under physiological conditions (5% weight loss over a period of 1 month, 2% in the first week), allowing use during the entire healing process. These chitosan thin films and subsequent derivatives hold potential as low-cost, dissolvable bandages, or second skin, with antimicrobial properties that prohibit the most relevant intrahospital bacteria that infest burn injuries.
Resumo:
Crystallization is the critical process used by pharmaceutical industries to achieve the desired size, size distribution, shape and polymorphism of a product material. Control of these properties presents a major challenge since they influence considerably downstream processing factors. Experimental work aimed at finding ways to control the crystal shape of Lacosamide, an active pharmaceutical ingredient developed by UCB Pharma, during crystallization was carried out. It was found that the crystal lattice displayed a very strong unidirectional double hydrogen bonding, which was at the origin of the needle shape of the Lacosamide crystals. Two main strategies were followed to hinder the hydrogen bonding and compete with the addition of a Lacosamide molecule along the crystal length axis: changing the crystallization medium or weakening the hydrogen bonding. Various solvents were tested to check whether the solvent used to crystallize Lacosamide had an influence on the final crystal shape. Solvent molecules seemed to slow down the growth in the length axis by hindering the unidirectional hydrogen bonding of Lacosamide crystals, but not enough to promote the crystal growth in the width axis. Additives were also tested. Certain additives have shown to compete in a more efficient way than solvent molecules with the hydrogen bonding of Lacosamide. The additive effect has also shown to be compatible with the solvent effect. In parallel, hydrogen atoms in Lacosamide were changed into deuterium atoms in order to weaken the hydrogen bonds strength. Weakening the hydrogen bonds of Lacosamide allowed to let the crystal grow in the width axis. Deuteration was found to be combinable with solvent effect while being in competition with the additive effect. The Lacosamide molecule was eventually deemed an absolute needle by the terms of Lovette and Doherty. The results of this dissertation are aimed at contributing to this classification.