3 resultados para Acetic acid

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chitosan gel films were successfully obtained by evaporation cast from chitosan solutions in aqueous acidic solutions of organic acids (lactic and acetic acid) as gel film bandages, with a range of additives that directly influence film morphology and porosity. We show that the structure and composition of a wide range of 128 thin gel films, is correlated to the antimicrobial properties, their biocompatibility and resistance to biodegradation. Infrared spectroscopy and solid-state 13C nuclear magnetic resonance spectroscopy was used to correlate film molecular structure and composition to good antimicrobial properties against 10 of the most prevalent Gram positive and Gram negative bacteria. Chitosan gel films reduce the number of colonies after 24 h of incubation by factors of ∼105–107 CFU/mL, compared with controls. For each of these films, the structure and preparation condition has a direct relationship to antimicrobial activity and effectiveness. These gel film bandages also show excellent stability against biodegradation with lysozyme under physiological conditions (5% weight loss over a period of 1 month, 2% in the first week), allowing use during the entire healing process. These chitosan thin films and subsequent derivatives hold potential as low-cost, dissolvable bandages, or second skin, with antimicrobial properties that prohibit the most relevant intrahospital bacteria that infest burn injuries.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis details the top-down fabrication of nanostructures on Si and Ge substrates by electron beam lithography (EBL). Various polymeric resist materials were used to create nanopatterns by EBL and Chapter 1 discusses the development characteristics of these resists. Chapter 3 describes the processing parameters, resolution and topographical and structural changes of a new EBL resist known as ‘SML’. A comparison between SML and the standard resists PMMA and ZEP520A was undertaken to determine the suitability of SML as an EBL resist. It was established that SML is capable of high-resolution patterning and showed good pattern transfer capabilities. Germanium is a desirable material for use in microelectronic applications due to a number of superior qualities over silicon. EBL patterning of Ge with high-resolution hydrogen silsesquioxane (HSQ) resist is however difficult due to the presence of native surface oxides. Thus, to combat this problem a new technique for passivating Ge surfaces prior to EBL processes is detailed in Chapter 4. The surface passivation was carried out using simple acids like citric acid and acetic acid. The acids were gentle on the surface and enabled the formation of high-resolution arrays of Ge nanowires using HSQ resist. Chapter 5 details the directed self-assembly (DSA) of block copolymers (BCPs) on EBL patterned Si and, for the very first time, Ge surfaces. DSA of BCPs on template substrates is a promising technology for high volume and cost effective nanofabrication. The BCP employed for this study was poly (styrene-b-ethylene oxide) and the substrates were pre-defined by HSQ templates produced by EBL. The DSA technique resulted into pattern rectification (ordering in BCP) and in pattern multiplication within smaller areas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two novel strains of Gram-stain-negative, rod-shaped, obligately anaerobic, non-spore-forming, non-motile bacteria were isolated from the faeces of healthy human subjects. The strains, designated as 585-1T and 668, were characterized by mesophilic fermentative metabolism, production of d-lactic acid, succinic acid and acetic acid as end products of d-glucose fermentation, prevalence of C18 : 1 ω9, C18 : 1 ω9 aldehyde, C16 : 0 and C16 : 1 ω7c fatty acids, presence of glycine, glutamic acid, lysine, alanine and aspartic acid in the petidoglycan peptide moiety and lack of respiratory quinones. Whole genome sequencing revealed the DNA G+C content was 56.4–56.6 mol%. The complete 16S rRNA gene sequences of the two strains shared 91.7/91.6 % similarity with Anaerofilum pentosovorans FaeT, 91.3/91.2 % with Gemmiger formicilis ATCC 27749T and 88.9/88.8 % with Faecalibacterium prausnitzii ATCC 27768T. On the basis of chemotaxonomic and genomic properties it was concluded that the strains represent a novel species in a new genus within the family Ruminococcaceae , for which the name Ruthenibacterium lactatiformans gen. nov., sp. nov. is proposed. The type strain of Ruthenibacterium lactatiformans is 585-1T (=DSM 100348T=VKM B-2901T).