2 resultados para Access control
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Since Wireless Sensor Networks (WSNs) are subject to failures, fault-tolerance becomes an important requirement for many WSN applications. Fault-tolerance can be enabled in different areas of WSN design and operation, including the Medium Access Control (MAC) layer and the initial topology design. To be robust to failures, a MAC protocol must be able to adapt to traffic fluctuations and topology dynamics. We design ER-MAC that can switch from energy-efficient operation in normal monitoring to reliable and fast delivery for emergency monitoring, and vice versa. It also can prioritise high priority packets and guarantee fair packet deliveries from all sensor nodes. Topology design supports fault-tolerance by ensuring that there are alternative acceptable routes to data sinks when failures occur. We provide solutions for four topology planning problems: Additional Relay Placement (ARP), Additional Backup Placement (ABP), Multiple Sink Placement (MSP), and Multiple Sink and Relay Placement (MSRP). Our solutions use a local search technique based on Greedy Randomized Adaptive Search Procedures (GRASP). GRASP-ARP deploys relays for (k,l)-sink-connectivity, where each sensor node must have k vertex-disjoint paths of length ≤ l. To count how many disjoint paths a node has, we propose Counting-Paths. GRASP-ABP deploys fewer relays than GRASP-ARP by focusing only on the most important nodes – those whose failure has the worst effect. To identify such nodes, we define Length-constrained Connectivity and Rerouting Centrality (l-CRC). Greedy-MSP and GRASP-MSP place minimal cost sinks to ensure that each sensor node in the network is double-covered, i.e. has two length-bounded paths to two sinks. Greedy-MSRP and GRASP-MSRP deploy sinks and relays with minimal cost to make the network double-covered and non-critical, i.e. all sensor nodes must have length-bounded alternative paths to sinks when an arbitrary sensor node fails. We then evaluate the fault-tolerance of each topology in data gathering simulations using ER-MAC.
Resumo:
Environmental Control Systems (ECS), enable people with high cervical Spinal Cord Injury (high SCI) to control and access everyday electronic devices. In Ireland, however, access for those who might benefit from ECS is limited. This study used a qualitative approach to explore the insider experience of an ECS starter-pack developed by the author, an occupational therapist. The primary research questions: what is it really like to live with ECS, and what does it mean to live with ECS, were explored using a phenomenological methodology conducted in three phases. In Phase 1 fifteen people with high SCI met twice in four focus groups to discuss experiences and expectations of ECS. Thematic analysis (Krueger & Casey, 2000), influenced by the psychological phenomenological approach (Creswell, 1998), yielded three categories of rich, practical, phenomenological findings: ECS Usage and utility; ECS Expectations and The meaning of living with ECS. Phase 1 findings informed Phase 2 which consisted of the development of a generic electronic assistive technology pack (GrEAT) that included commercially available constituents as well as short instructional videos and an information booklet. This second phase culminated in a one-person, three-week pilot trial. Phase 3 involved a six person, 8-week trial of the GrEAT, followed by individual in-depth interviews. Interpretative Phenomenological Analysis IPA (Smith, Larkin & Flowers, 2009), aided by computer software ATLAS.ti and iMindmap, guided data analysis and identification of themes. Getting used to ECS, experienced as both a hassle and engaging, resulted in participants being able to Take back a little of what you have lost, which involved both feeling enabled and reclaiming a little doing. The findings of this study provide substantial insights into what it is like to live with ECS and the meanings attributed to that experience. Several practical, real world implications are discussed.