2 resultados para Absorption and attenuation meter AC-9
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Background: Parental obesity is a predominant risk factor for childhood obesity. Family factors including socio-economic status (SES) play a role in determining parent weight. It is essential to unpick how shared family factors impact on child weight. This study aims to investigate the association between measured parent weight status, familial socio-economic factors and the risk of childhood obesity at age 9. Methodology/Principal Findings: Cross sectional analysis of the first wave (2008) of the Growing Up in Ireland (GUI) study. GUI is a nationally representative study of 9-year-old children (N = 8,568). Schools were selected from the national total (response rate 82%) and age eligible children (response rate 57%) were invited to participate. Children and their parents had height and weight measurements taken using standard methods. Data were reweighted to account for the sampling design. Childhood overweight and obesity prevalence were calculated using International Obesity Taskforce definitions. Multinomial logistic regression examined the association between parent weight status, indicators of SES and child weight. Overall, 25% of children were either overweight (19.3%) or obese (6.6%). Parental obesity was a significant predictor of child obesity. Of children with normal weight parents, 14.4% were overweight or obese whereas 46.2% of children with obese parents were overweight or obese. Maternal education and household class were more consistently associated with a child being in a higher body mass index category than household income. Adjusted regression indicated that female gender, one parent family type, lower maternal education, lower household class and a heavier parent weight status significantly increased the odds of childhood obesity. Conclusions/Significance: Parental weight appears to be the most influential factor driving the childhood obesity epidemic in Ireland and is an independent predictor of child obesity across SES groups. Due to the high prevalence of obesity in parents and children, population based interventions are required.
Resumo:
Modification of TiO2 with metal oxide nanoclusters such as FeOx, NiOx has been shown to be a promising approach to the design of new photocatalysts with visible light absorption and improved electron–hole separation. To study further the factors that determine the photocatalytic properties of structures of this type, we present in this paper a first principles density functional theory (DFT) investigation of TiO2 rutile(110) and anatase(001) modified with PbO and PbO2 nanoclusters, with Pb2+ and Pb4+ oxidation states. This allows us to unravel the effect of the Pb oxidation state on the photocatalytic properties of PbOx-modified TiO2. The nanoclusters adsorb strongly at all TiO2 surfaces, creating new Pb–O and Ti–O interfacial bonds. Modification with PbO and PbO2 nanoclusters introduces new states in the original band gap of rutile and anatase. However the oxidation state of Pb has a dramatic impact on the nature of the modifications of the band edges of TiO2 and on the electron–hole separation mechanism. PbO nanocluster modification leads to an upwards shift of the valence band which reduces the band gap and upon photoexcitation results in hole localisation on the PbO nanocluster and electron localisation on the surface. By contrast, for PbO2 nanocluster modification the hole will be localised on the TiO2 surface and the electron on the nanocluster, thus giving rise to two different band gap reduction and electron–hole separation mechanisms. We find no crystal structure sensitivity, with both rutile and anatase surfaces showing similar properties upon modification with PbOx. In summary the photocatalytic properties of heterostructures of TiO2 with oxide nanoclusters can be tuned by oxidation state of the modifying metal oxide, with the possibility of a reduced band gap causing visible light activation and a reduction in charge carrier recombination.