2 resultados para AUTOSOMAL DOMINANT INHERITANCE

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Restless Legs Syndrome (RLS) is a common neurological disorder affecting nearly 15% of the general population. Ironically, RLS can be described as the most common condition one has never heard of. It is usually characterised by uncomfortable, unpleasant sensations in the lower limbs inducing an uncontrollable desire to move the legs. RLS exhibits a circadian pattern with symptoms present predominantly in the evening or at night, thus leading to sleep disruption and daytime somnolence. RLS is generally classified into primary (idiopathic) and secondary (symptomatic) forms. Primary RLS includes sporadic and familial cases of which the age of onset is usually less than 45 years and progresses slowly with a female to male ratio of 2:1. Secondary forms often occur as a complication of another health condition, such as iron deficiency or thyroid dysfunction. The age of onset is usually over 45 years, with an equal male to female ratio and more rapid progression. Ekbom described the familial component of the disorder in 1945 and since then many studies have been published on the familial forms of the disorder. Molecular genetic studies have so far identified ten loci (5q, 12q, 14p, 9p, 20p, 16p, 19p, 4q, 17p). No specific gene within these loci has been identified thus far. Association mapping has highlighted a further five areas of interest. RLS6 has been found to be associated with SNPs in the BTBD9 gene. Four other variants were found within intronic and intergenic regions of MEIS1, MAP2K5/LBXCOR1, PTPRD and NOS1. The pathophysiology of RLS is complex and remains to be fully elucidated. Conditions associated with secondary RLS, such as pregnancy or end-stage renal disease, are characterised by iron deficiency, which suggests that disturbed iron homeostasis plays a role. Dopaminergic dysfunction in subcortical systems also appears to play a central role. An ongoing study within the Department of Pathology (University College Cork) is investigating the genetic characteristics of RLS in Irish families. A three generation RLS pedigree RLS3002 consisting of 11 affected and 7 unaffected living family members was recruited. The family had been examined for four of the known loci (5q, 12q, 14p and 9p) (Abdulrahim 2008). The aim of this study was to continue examining this Irish RLS pedigree for possible linkage to the previously described loci and associated regions. Using informative microsatellite markers linkage was excluded to the loci on 5q, 12q, 14p, 9p, 20p, 16p, 19p, 4q, 17p and also within the regions reported to be associated with RLS. This suggested the presence of a new unidentified locus. A genome-wide scan was performed using two microsatellite marker screening sets (Research Genetics Inc. Mapping set and the Applied Biosystems Linkage mapping set version 2.5). Linkage analysis was conducted under an autosomal dominant model with a penetrance of 95% and an allele frequency of 0.01. A maximum LOD score of 3.59 at θ=0.00 for marker D19S878 indicated significant linkage on chromosome 19p. Haplotype analysis defined a genetic region of 6.57 cM on chromosome 19p13.3, corresponding to 2.5 Mb. There are approximately 100 genes annotated within the critical region. Sequencing of two candidate genes, KLF16 and GAMT, selected on the assumed pathophysiology of RLS, did not identify any sequence variant. This study provides evidence of a novel RLS locus in an Irish pedigree, thus supporting the picture of RLS as a genetically heterogeneous trait.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Huntington’s Disease (HD) is a rare autosomal dominant neurodegenerative disease caused by the expression of a mutant Huntingtin (muHTT) protein. Therefore, preventing the expression of muHTT by harnessing the specificity of the RNA interference (RNAi) pathway is a key research avenue for developing novel therapies for HD. However, the biggest caveat in the RNAi approach is the delivery of short interfering RNA (siRNAs) to neurons, which are notoriously difficult to transfect. Indeed, despite the great advances in the field of nanotechnology, there remains a great need to develop more effective and less toxic carriers for siRNA delivery to the Central Nervous System (CNS). Thus, the aim of this thesis was to investigate the utility of modified amphiphilic β-cyclodextrins (CDs), oligosaccharide-based molecules, as non-viral vectors for siRNA delivery for HD. Modified CDs were able to bind and complex siRNAs forming nanoparticles capable of delivering siRNAs to ST14A-HTT120Q cells and to human HD fibroblasts, and reducing the expression of the HTT gene in these in vitro models of HD. Moreover, direct administration of CD.siRNA nanoparticles into the R6/2 mouse brain resulted in significant HTT gene expression knockdown and selective alleviation of rotarod motor deficits in this mouse model of HD. In contrast to widely used transfection reagents, CD.siRNA nanoparticles only induced limited cytotoxic and neuroinflammatory responses in multiple brain-derived cell-lines, and also in vivo after single direct injections into the mouse brain. Alternatively, we have also described a PEGylation-based formulation approach to further stabilise CD.siRNA nanoparticles and progress towards a systemic delivery nanosystem. Resulting PEGylated CD.siRNA nanoparticles showed increased stability in physiological saltconditions and, to some extent, reduced protein-induced aggregation. Taken together, the work outlined in this thesis identifies modified CDs as effective, safe and versatile siRNA delivery systems that hold great potential for the treatment of CNS disorders, such as HD.