3 resultados para ANODIC CATALYST

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes the synthesis and reactivity of a series of α-diazocarbonyl compounds with particular emphasis on the use of copper-bis(oxazoline)-mediated enantioselective C–H insertion reactions leading to enantioenriched cyclopentanone derivatives. Through the use of additives, the enantioselectivity achieved with the copper catalysts for the first time reaches synthetically useful levels (up to 91% ee). Chapter one provides a comprehensive overview of enantioselective C–H insertions with α-diazocarbonyl compounds from the literature. The majority of reports in this section involve rhodium-catalysed systems with limited reports to date of asymmetric C–H insertion reactions in the presence of copper catalysts. Chapter two focuses on the synthesis and C–H insertion reactions of α-diazo-β-keto sulfones leading to α-sulfonyl cyclopentanones as the major product. Detailed investigation of the impact of substrate structure (both the sulfonyl substitutent and the substituent at the site of insertion), the copper source, ligand, counterion, additive and solvent was undertaken to provide an insight into the mechanistic basis for enantiocontrol in the synthetically powerful C–H insertion process and to enable optimisation of enantiocontrol and ligand design. Perhaps the most significant outcome of this work is the enhanced enantioselection achieved through use of additives, substantially improving the synthetic utility of the asymmetric C–H insertion process. In addition to the C–H insertion reaction, mechanistically interesting competing reaction pathways involving hydride transfer are observed. Chapter three reports the extension of the catalyst-additive systems, developed for C–H insertions with α-diazo-β-keto sulfones in chapter two, to C–H insertion in analogous α-diazo-β-keto phosphonate and α-diazo-β-keto ester systems. While similar patterns were seen in terms of ligand effects, the enantiopurities achieved for these reactions were lower than those in the cyclisations with analogous α-diazo-β-keto sulfones. Extension of this methodology to cyclopropanation and oxium ylide formation/[2,3]-sigmatropic rearrangement was also explored. Chapter four contains the full experimental details and spectral characterisation of all novel compounds synthesised in this project, while details of chiral stationary phase HPLC analysis and X-ray crystallography are included in the appendix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When porous InP is anodically formed in KOH electrolytes, a thin layer ~40 nm in thickness, close to the surface, appears to be unmodified. We have investigated the earlier stages of the anodic formation of porous InP in 5 mol dm-3 KOH. TEM clearly shows individual porous domains which appear triangular in cross-section and square in plan view. The crosssections also show that the domains are separated from the surface by a ~40 nm thick, dense InP layer. It is concluded that the porous domains have a square-based pyramidal shape and that each one develops from an individual surface pit which forms a channel through this near-surface layer. We suggest that the pyramidal structure arises as a result of preferential pore propagation along the <100> directions. AFM measurements show that the density of surface pits increases with time. Each of these pits acts as a source for a pyramidal porous domain, and these domains eventually form a continuous porous layer. This implies that the development of porous domains beneath the surface is also progressive in nature. Evidence for this was seen in plan view TEM images. Merging of domains continues to occur at potentials more anodic than the peak potential, where the current is observed to decrease. When the domains grow, the current density increases correspondingly. Eventually, domains meet, the interface between the porous and bulk InP becomes relatively flat and its total effective surface area decreases resulting in a decrease in the current density. Quantitative models of this process are being developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is focused on transition metal catalysed reaction of α-diazoketones leading to aromatic addition to form azulenones, with particular emphasis on enantiocontrol through use of chiral copper catalysts. The first chapter provides an overview of the influence of variation of the substituent at the diazo carbon on the outcome of subsequent reaction pathways, focusing in particular on C-H insertion, cyclopropanation, aromatic addition and ylide formation drawing together for the first time input from a range of primary reports. Chapter two describes the synthesis of a range of novel α-diazoketones. Rhodium and copper catalysed cyclisation of these to form a range of azulenones is described. Variation of the transition metal catalyst was undertaken using both copper and rhodium based systems and ligand variation, including the design and synthesis of a novel bisoxazoline ligand. The influence of additives, especially NaBARF, on the enantiocontrol was explored in detail and displayed an interesting impact which was sensitive to substituent effects. Further exploration demonstrated that it is the sodium cation which is critical in the additive effects. For the first time, enantiocontrol in the aromatic addition of terminal diazoketones was demonstrated indicating enantiofacial control in the aromatic addition is feasible in the absence of a bridgehead substituent. Determination of the enantiopurity in these compounds was particularly challenging due to the lability of the products. A substantial portion of the work was focused on determining the stereochemical outcome of the aromatic addition processes, both the absolute stereochemistry and extent of enantiopurity. Formation of PTAD adducts was beneficial in this regard. The third chapter contains the full experimental details and spectral characterisation of all novel compounds synthesised in this project, while details of chiral stationary phase HPLC and 1H NMR analysis are included in the appendix.