3 resultados para ALGINATE BEADS

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hitherto, the majority of studies which have included the discussion of Viking glass beads have mainly focused on the assemblages from individual sites, with limited use of known parallels. Exceptions to this include recent publications regarding the Icelandic material and Callmer’s 1977 catalogue of the finds from mainland Scandinavia, now over thirty years old. Analysis of these finds from Ireland was, for the most part, non-existent. The aim of this research is to address this lack of analysis within Ireland, while incorporating the wider context of the beads within the Viking North Atlantic. The research thus examines the use of glass beads of diagnostically Scandinavian manufacture and import found in Ireland, particularly in relation to their context and distribution. The history of research from Ireland as well as from across the Viking world is considered and explored throughout the thesis, with critique of methods and discussions used. Focussed analysis of both published and unpublished material detailing artefacts from Scandinavia (especially Vestfold), Britain, Iceland, the Faroe Islands and L’Anse aux Meadows is presented within the thesis in order to provide the greater picture for the core section of the thesis, the glass beads found in Ireland. Three appendices are included within Volume 2, databases of the glass beads under discussion from Ireland, the Vestfold region graves in Norway and the topsoil finds from the Kaupang trading place, also located within Vestfold. These appendices therefore represent the first-hand analysis of glass beads by the author. In total, this research represents the most up-to-date analysis of Viking glass beads from Ireland and presents a new look at the patterns of use, trade and interpersonal contact that affected the everyday lives of individuals living within Viking Age Ireland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work in this thesis concerns the advanced development of polymeric membranes of two types; pervaporation and lateral-flow. The former produced from a solution casting method and the latter from a phase separation. All membranes were produced from casting lacquers. Early research centred on the development of viable membranes. This led to a supported polymer blend pervaporation membrane. Selective layer: plasticized 4:1 mass ratio sodium-alginate: poly(vinyl-alcohol) polymer blend. Using this membrane, pervaporation separation of ethanol/water mixtures was carefully monitored as a function of film thickness and time. Contrary to literature expectations, these films showed increased selectivity and decreased flux as film thickness was reduced. It is argued that morphology and structure of the polymer blend changes with thickness and that these changes define membrane efficiency. Mixed matrix membrane development was done using spherical, discreet, size-monodisperse mesoporous silica particles of 1.8 - 2μm diameter, with pore diameters of ~1.8 nm were incorporated into a poly(vinyl alcohol) [PVA] matrix. Inclusion of silica benefitted pervaporation performance for the dehydration of ethanol, improving flux and selectivity throughout in all but the highest silica content samples. Early lateral-flow membrane research produced a membrane from a basic lacquer composition required for phase inversion; polymer, solvent and non-solvent. Results showed that bringing lacquers to cloud point benefits both the pore structure and skin layers of the membranes. Advancement of this work showed that incorporation of ethanol as a mesosolvent into the lacquer effectively enhances membrane pore structure resulting in an improvement in lateral flow rates of the final membranes. This project details the formation mechanics of pervaporation and lateral-flow membranes and how these can be controlled. The principle methods of control can be applied to the formation of any other flat sheet polymer membranes, opening many avenues of future membrane research and industrial application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The overall objective of this thesis is to integrate a number of micro/nanotechnologies into integrated cartridge type systems to implement such biochemical protocols. Instrumentation and systems were developed to interface such cartridge systems: (i) implementing microfluidic handling, (ii) executing thermal control during biochemical protocols and (iii) detection of biomolecules associated with inherited or infectious disease. This system implements biochemical protocols for DNA extraction, amplification and detection. A digital microfluidic chip (ElectroWetting on Dielectric) manipulated droplets of sample and reagent implementing sample preparation protocols. The cartridge system also integrated a planar magnetic microcoil device to generate local magnetic field gradients, manipulating magnetic beads. For hybridisation detection a fluorescence microarray, screening for mutations associated with CFTR gene is printed on a waveguide surface and integrated within the cartridge. A second cartridge system was developed to implement amplification and detection screening for DNA associated with disease-causing pathogens e.g. Escherichia coli. This system incorporates (i) elastomeric pinch valves isolating liquids during biochemical protocols and (ii) a silver nanoparticle microarray for fluorescent signal enhancement, using localized surface plasmon resonance. The microfluidic structures facilitated the sample and reagent to be loaded and moved between chambers with external heaters implementing thermal steps for nucleic acid amplification and detection. In a technique allowing probe DNA to be immobilised within a microfluidic system using (3D) hydrogel structures a prepolymer solution containing probe DNA was formulated and introduced into the microfluidic channel. Photo-polymerisation was undertaken forming 3D hydrogel structures attached to the microfluidic channel surface. The prepolymer material, poly-ethyleneglycol (PEG), was used to form hydrogel structures containing probe DNA. This hydrogel formulation process was fast compared to conventional biomolecule immobilization techniques and was also biocompatible with the immobilised biomolecules, as verified by on-chip hybridisation assays. This process allowed control over hydrogel height growth at the micron scale.