4 resultados para ADDITIONS
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
This thesis is focused on transition metal catalysed reaction of α-diazoketones leading to aromatic addition to form azulenones, with particular emphasis on enantiocontrol through use of chiral copper catalysts. The first chapter provides an overview of the influence of variation of the substituent at the diazo carbon on the outcome of subsequent reaction pathways, focusing in particular on C-H insertion, cyclopropanation, aromatic addition and ylide formation drawing together for the first time input from a range of primary reports. Chapter two describes the synthesis of a range of novel α-diazoketones. Rhodium and copper catalysed cyclisation of these to form a range of azulenones is described. Variation of the transition metal catalyst was undertaken using both copper and rhodium based systems and ligand variation, including the design and synthesis of a novel bisoxazoline ligand. The influence of additives, especially NaBARF, on the enantiocontrol was explored in detail and displayed an interesting impact which was sensitive to substituent effects. Further exploration demonstrated that it is the sodium cation which is critical in the additive effects. For the first time, enantiocontrol in the aromatic addition of terminal diazoketones was demonstrated indicating enantiofacial control in the aromatic addition is feasible in the absence of a bridgehead substituent. Determination of the enantiopurity in these compounds was particularly challenging due to the lability of the products. A substantial portion of the work was focused on determining the stereochemical outcome of the aromatic addition processes, both the absolute stereochemistry and extent of enantiopurity. Formation of PTAD adducts was beneficial in this regard. The third chapter contains the full experimental details and spectral characterisation of all novel compounds synthesised in this project, while details of chiral stationary phase HPLC and 1H NMR analysis are included in the appendix.
Resumo:
Current building regulations are generally prescriptive in nature. It is widely accepted in Europe that this form of building regulation is stifling technological innovation and leading to inadequate energy efficiency in the building stock. This has increased the motivation to move design practices towards a more ‘performance-based’ model in order to mitigate inflated levels of energy-use consumed by the building stock. A performance based model assesses the interaction of all building elements and the resulting impact on holistic building energy-use. However, this is a nebulous task due to building energy-use being affected by a myriad of heterogeneous agents. Accordingly, it is imperative that appropriate methods, tools and technologies are employed for energy prediction, measurement and evaluation throughout the project’s life cycle. This research also considers that it is imperative that the data is universally accessible by all stakeholders. The use of a centrally based product model for exchange of building information is explored. This research describes the development and implementation of a new building energy-use performance assessment methodology. Termed the Building Effectiveness Communications ratios (BECs) methodology, this performance-based framework is capable of translating complex definitions of sustainability for energy efficiency and depicting universally understandable views at all stage of the Building Life Cycle (BLC) to the project’s stakeholders. The enabling yardsticks of building energy-use performance, termed Ir and Pr, provide continuous design and operations feedback in order to aid the building’s decision makers. Utilised effectively, the methodology is capable of delivering quality assurance throughout the BLC by providing project teams with quantitative measurement of energy efficiency. Armed with these superior enabling tools for project stakeholder communication, it is envisaged that project teams will be better placed to augment a knowledge base and generate more efficient additions to the building stock.
Resumo:
Development of novel synthetic methodology for selective transformation of organic compounds is a central element underpinning organic synthesis with control of chemo-, regio- and stereoselectivity a very high priority. Reactions which can be conducted under mild reaction conditions and, ideally in an environmentally attractive manner, are particularly advantageous. The principal objective of this thesis was to explore the synthesis, reactivity and synthetic utility of a series of α,β-thio-β-chloroenones. The stereochemical features of these transformations and the potential of this novel series of compounds in the synthesis of bioactive compounds were of particular interest. In exploring the reactivity of these compounds, the key transformations included nucleophilic additions and Stille cross-coupling at the β-carbon. Chapter 1 reviews the literature relevant to the research conducted, and focuses in particular on the synthesis of β-chloroenones and related unsaturated carbonyl compounds. The synthesis of chalcone compounds from various precursors is also discussed, with particular emphasis on the use of palladium cross-coupling reactions in the preparation of these compounds. The biological activity of chalcones is also summarised in this chapter. The second chapter delineates the stereoselective synthesis of the novel α-thio-β-chloroenones from the corresponding α-thioketones in a multistep reaction cascade initiated by a NCS-mediated chlorination. A range of both alkyl and aryl β-chloroenones were prepared in this work and the oxidation of these compounds to the corresponding sulfoxides and sulfones is also outlined. The electrophilicity of the β-carbon of the enones was examined in nucleophilic addition/substitution reactions with successful access to a variety of synthetically useful novel adducts including acetals and enaminoketones. Investigation of the synthetic potential of the Stille cross-coupling reaction with the novel α-thio-β-chloroenones was explored and provided an efficient route for the synthesis of a novel series of chalcones. Most importantly this new methodology provided a new and synthetically powerful approach for carbon-carbon bond formation at the β-carbon under mild neutral conditions. A preliminary investigation into the use of these β-chloroenones as dienophiles in Diels-Alder cycloaddition reactions is also discussed in this chapter. Chapter 2 also reports the nucleophilic addition of N, O, S and C nucleophiles to previously described β-chloroacrylamides and their corresponding sulfoxide derivatives. This work builds on previous research carried out in this programme and the reactivity of these β-chloroacrylamides at the sulfide and sulfoxide level is compared. Comparison of the reactivity of the β-chloroacrylamides, in nucleophilic substitution and Stille-coupling, with that of the novel β-chloroenones is of interest. Finally, the biological activity of both the β-chloroenones and the β-chloroacrylamides in terms of cytotoxicity is summarised in Chapter 2. The final chapter, Chapter 3, details the full experimental procedures, including spectroscopic and analytical data for the compounds prepared during this research.
Resumo:
The use of unmalted oats or sorghum in brewing has great potential for creating new beer types/flavors and saving costs. However, the substitution of barley malt with oat or sorghum adjunct is not only innovative but also challenging due to their specific grain characteristics. The overall objectives of this Ph.D. project were: 1) to investigate the impact of various types and levels of oats or sorghum on the quality/processability of mashes, worts, and beers; 2) to provide solutions as regards the application of industrial enzymes to overcome potential brewing problems. For these purposes, a highly precise rheological method using a controlled stress rheometer was developed and successfully applied as a tool for optimizing enzyme additions and process parameters. Further, eight different oat cultivars were compared in terms of their suitability as brewing adjuncts and two very promising types identified. In another study, the limitations of barley malt enzymes and the benefits of the application of industrial enzymes in high-gravity brewing with oats were determined. It is recommended to add enzymes to high-gravity mashes when substituting 30% or more barley malt with oats in order to prevent filtration and fermentation problems. Pilot-scale brewing trials using 10–40% unmalted oats revealed that the sensory quality of oat beers improved with increasing adjunct level. In addition, commercially available oat and sorghum flours were implemented into brewing. The use of up to 70% oat flour and 50% sorghum flour, respectively, is not only technically feasible but also economically beneficial. In a further study on sorghum was demonstrated that the optimization of industrial mashing enzymes has great potential for reducing beer production costs. A comparison of the brewing performance of red Italian and white Nigerian sorghum clearly showed that European grown sorghum is suitable for brewing purposes; 40% red sorghum beers were even found to be very low in gluten.