3 resultados para ACTIVE SHAPE MODELS

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The majority of active pharmaceutical ingredients (APIs) are crystalline solids in their pure forms. Crystalline solids have definable morphologies, i.e. shape and size. Crystal morphology is determined by both the internal structure of the crystals and external factors during growth from solution. The morphology of a crystal batch can affect key processes during manufacturing. Companies generally accept whatever morphology the manufacturing process provides and deal with any subsequent problems by costly trouble‒shooting. Rational design of optimised morphologies for crystalline pharmaceutical solids would be a very significant technical and commercial advance. Chapter one introduces the concept of crystal nucleation and growth. The phenomenon of polymorphism alongside the causes and impact is discussed. A summary of the scope of instrumentation used in the investigation of crystal polymorphism and morphology, including crystal size distribution (CSD), is also included. Chapter two examines the research carried out during an exploration of the optimum crystallisation parameters of phenacetin. Following a morphological study, the impact this induces on particle density and flow properties is examined. The impact of impurities on the crystallisation properties of phenacetin is investigated. Significantly, the location of impurities within individual crystals is also studied. The third chapter describes an industrial collaboration looking at the resolution and polymorphic study of trometamol and lysine salts of ketoprofen and 2‒phenylpropionic acid (2‒PPA). Chapter four incorporates a solid state study on three separate compounds: 2‒chloro‒4‒nitroaniline, 4‒hydroxy‒N‒phenylbenzenesulfonamide and N‒acetyl‒D‒glucosamine‒6‒O‒sulfate. 2‒Chloro‒4‒nitroaniline and 4‒hydroxy‒N‒phenylbenzenesulfonamide both produced interesting, extreme morphologies which warranted further investigation as part of a collaborative study. Following a summarisation of results in chapter five, chapter six contains the full experimental details, incorporating spectral and other analytical data for all compounds synthesised during the course of the research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crystallization is the critical process used by pharmaceutical industries to achieve the desired size, size distribution, shape and polymorphism of a product material. Control of these properties presents a major challenge since they influence considerably downstream processing factors. Experimental work aimed at finding ways to control the crystal shape of Lacosamide, an active pharmaceutical ingredient developed by UCB Pharma, during crystallization was carried out. It was found that the crystal lattice displayed a very strong unidirectional double hydrogen bonding, which was at the origin of the needle shape of the Lacosamide crystals. Two main strategies were followed to hinder the hydrogen bonding and compete with the addition of a Lacosamide molecule along the crystal length axis: changing the crystallization medium or weakening the hydrogen bonding. Various solvents were tested to check whether the solvent used to crystallize Lacosamide had an influence on the final crystal shape. Solvent molecules seemed to slow down the growth in the length axis by hindering the unidirectional hydrogen bonding of Lacosamide crystals, but not enough to promote the crystal growth in the width axis. Additives were also tested. Certain additives have shown to compete in a more efficient way than solvent molecules with the hydrogen bonding of Lacosamide. The additive effect has also shown to be compatible with the solvent effect. In parallel, hydrogen atoms in Lacosamide were changed into deuterium atoms in order to weaken the hydrogen bonds strength. Weakening the hydrogen bonds of Lacosamide allowed to let the crystal grow in the width axis. Deuteration was found to be combinable with solvent effect while being in competition with the additive effect. The Lacosamide molecule was eventually deemed an absolute needle by the terms of Lovette and Doherty. The results of this dissertation are aimed at contributing to this classification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The role of the microbiome has become synonymous with human health and disease. Bile acids, as essential components of the microbiome, have gained sustained credibility as potential modulators of cancer progression in several disease models. At physiological concentrations, bile acids appear to influence cancer phenotypes, although conflicting data surrounds their precise physiological mechanism of action. Previously, we demonstrated bile acids destabilised the HIF-1α subunit of the Hypoxic-Inducible Factor-1 (HIF-1) transcription factor. HIF-1 overexpression is an early biomarker of tumour metastasis and is associated with tumour resistance to conventional therapies, and poor prognosis in a range of different cancers. METHODS: Here we investigated the effects of bile acids on the cancer growth and migratory potential of cell lines where HIF-1α is known to be active under hypoxic conditions. HIF-1α status was investigated in A-549 lung, DU-145 prostate and MCF-7 breast cancer cell lines exposed to bile acids (CDCA and DCA). Cell adhesion, invasion, migration was assessed in DU-145 cells while clonogenic growth was assessed in all cell lines. RESULTS: Intracellular HIF-1α was destabilised in the presence of bile acids in all cell lines tested. Bile acids were not cytotoxic but exhibited greatly reduced clonogenic potential in two out of three cell lines. In the migratory prostate cancer cell line DU-145, bile acids impaired cell adhesion, migration and invasion. CDCA and DCA destabilised HIF-1α in all cells and significantly suppressed key cancer progression associated phenotypes; clonogenic growth, invasion and migration in DU-145 cells. CONCLUSIONS: These findings suggest previously unobserved roles for bile acids as physiologically relevant molecules targeting hypoxic tumour progression.