4 resultados para ACTIVATED RESTORATIVE MATERIALS

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aim: To study the outcomes for restored primary molar teeth; to examine outcomes in relation to tooth type involved, intracoronal restoration complexity and to the material used. Materials and methods: Design: Retrospective study of primary molar teeth restored by intracoronal restorations. A series of restored primary molar teeth for children aged 6-12 years was studied. The principal outcome measure was failure of initial restoration (re-restoration or extraction). Three hundred patient records were studied to include three equal groups of primary molar teeth restored with amalgam, composite or glass ionomer, respectively. Restorative materials, the restoration type, simple (single surface) or complex (multi-surface) restoration, and tooth notation were recorded. Subsequent interventions were examined. Data were coded and entered into a Microsoft Excel database and analysis undertaken using SPSS v.18. Statistical differences were tested using the c2 test of statistical significance. Results: Of the 300 teeth studied, 61 restoration failures were recorded with 11 of those extracted. No significant differences were found between outcomes for upper first, upper second, lower first or lower second primary molars. Outcomes for simple primary teeth restored by intracoronal restorations were significantly better than those for complex intracoronal restorations (P = 0.042). Teeth originally restored with amalgam accounted for 19.7% of the 61 failures, composite for 29.5%, while teeth restored with glass ionomer represented 50.8% of all restoration failures. The differences were significant (P = 0.012). Conclusions: The majority (79.7%) of the 300 restored primary teeth studied were successful, and 3.7% teeth were extracted. Restorations involving more than one surface had almost twice the failure rate of single surface restorations. The difference was significant. Significant differences in failure rates for the three dental materials studied were recorded. Amalgam had the lowest failure rate while the failure rate with glass ionomer was the highest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Petrochemical plastics/polymers are a common feature of day to day living as they occur in packaging, furniture, mobile phones, computers, construction equipment etc. However, these materials are produced from non-renewable materials and are resistant to microbial degradation in the environment. Considerable research has therefore been carried out into the production of sustainable, biodegradable polymers, amenable to microbial catabolism to CO2 and H2O. A key group of microbial polyesters, widely considered as optimal replacement polymers, are the Polyhydroxyalkaonates (PHAs). Primary research in this area has focused on using recombinant pure cultures to optimise PHA yields, however, despite considerable success, the high costs of pure culture fermentation have thus far hindered the commercial viability of PHAs thus produced. In more recent years work has begun to focus on mixed cultures for the optimisation of PHA production, with waste incorporations offering optimal production cost reductions. The scale of dairy processing in Ireland, and the high organic load wastewaters generated, represent an excellent potential substrate for bioconversion to PHAs in a mixed culture system. The current study sought to investigate the potential for such bioconversion in a laboratory scale biological system and to establish key operational and microbial characteristics of same. Two sequencing batch reactors were set up and operated along the lines of an enhanced biological phosphate removal (EBPR) system, which has PHA accumulation as a key step within repeated rounds of anaerobic/aerobic cycling. Influents to the reactors varied only in the carbon sources provided. Reactor 1 received artificial wastewater with acetate alone, which is known to be readily converted to PHA in the anaerobic step of EBPR. Reactor 2 wastewater influent contained acetate and skim milk to imitate a dairy processing effluent. Chemical monitoring of nutrient remediation within the reactors as continuously applied and EBPR consistent performances observed. Qualitative analysis of the sludge was carried out using fluorescence microscopy with Nile Blue A lipophillic stain and PHA production was confirmed in both reactors. Quantitative analysis via HPLC detection of crotonic acid derivatives revealed the fluorescence to be short chain length Polyhydroxybutyrate, with biomass dry weight accumulations of 11% and 13% being observed in reactors 1 and 2, respectively. Gas Chromatography-Mass Spectrometry for medium chain length methyl ester derivatives revealed the presence of hydroxyoctanoic, -decanoic and -dodecanoic acids in reactor 1. Similar analyses in reactor 2 revealed monomers of 3-hydroxydodecenoic and 3-hydroxytetradecanoic acids. Investigation of the microbial ecology of both reactors as conducted in an attempt to identify key species potentially contributing to reactor performance. Culture dependent investigations indicated that quite different communities were present in both reactors. Reactor 1 isolates demonstrated the following species distributions Pseudomonas (82%), Delftia acidovorans (3%), Acinetobacter sp. (5%) Aminobacter sp., (3%) Bacillus sp. (3%), Thauera sp., (3%) and Cytophaga sp. (3%). Relative species distributions among reactor 2 profiled isolates were more evenly distributed between Pseudoxanthomonas (32%), Thauera sp (24%), Acinetobacter (24%), Citrobacter sp (8%), Lactococcus lactis (5%), Lysinibacillus (5%) and Elizabethkingia (2%). In both reactors Gammaproteobacteria dominated the cultured isolates. Culture independent 16S rRNA gene analyses revealed differing profiles for both reactors. Reactor 1 clone distribution was as follows; Zooglea resiniphila (83%), Zooglea oryzae (2%), Pedobacter composti (5%), Neissericeae sp. (2%) Rhodobacter sp. (2%), Runella defluvii (3%) and Streptococcus sp. (3%). RFLP based species distribution among the reactor 2 clones was as follows; Runella defluvii (50%), Zoogloea oryzae (20%), Flavobacterium sp. (9%), Simplicispira sp. (6%), Uncultured Sphingobacteria sp. (6%), Arcicella (6%) and Leadbetterella bysophila (3%). Betaproteobacteria dominated the 16S rRNA gene clones identified in both reactors. FISH analysis with Nile Blue dual staining resolved these divergent findings, identifying the Betaproteobacteria as dominant PHA accumulators within the reactor sludges, although species/strain specific allocations could not be made. GC analysis of the sludge had indicated the presence of both medium chain length as well short chain length PHAs accumulating in both reactors. In addition the cultured isolates from the reactors had been identified previously as mcl and scl PHA producers, respectively. Characterisations of the PHA monomer profiles of the individual isolates were therefore performed to screen for potential novel scl-mcl PHAs. Nitrogen limitation driven PHA accumulation in E2 minimal media revealed a greater propensity among isoates for mcl-pHA production. HPLC analysis indicated that PHB production was not a major feature of the reactor isolates and this was supported by the low presence of scl phaC1 genes among PCR screened isolates. A high percentage distribution of phaC2 mcl-PHA synthase genes was recorded, with the majority sharing high percentage homology with class II synthases from Pseudomonas sp. The common presence of a phaC2 homologue was not reflected in the production of a common polymer. Considerable variation was noted in both the monomer composition and ratios following GC analysis. While co-polymer production could not be demonstrated, potentially novel synthase substrate specificities were noted which could be exploited further in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: to assess elderly patients’ dental status and dental habits and compare the survival rates, impact on patients’ quality of life and cost-effectiveness of Atraumatic Restorative Treatment (ART) and a conventional treatment (CT) to restore carious lesions in an elderly population. Methods: In this randomised clinical trial, 99 independently living adults (65-90 yrs) with carious lesions were randomly allocated to receive either ART or CT. Details of restored, missing and carious teeth were recorded and patients answered some questions about their oral hygiene and dental attendance habits. Direct and indirect costs were measured based on treatment time, materials and labour. Effectiveness was measured using restoration survival percentage after one year. The survival of restorations was assessed 6 months and one year after restoration placement by an independent examiner. Oralhealth related quality of life (OHRQoL) was assessed using the OHIP-14 at baseline and 2 months after treatment together with a global transition statement. Results: The patient sample comprised 46 (46.46%) male and 53 (53.54) female participants at baseline, with a mean age of 73.18 (SD=6.76). The mean DMFT of the entire sample was 27.10. Ninety patients and 268 restorations could be assessed after one year, 127 ART (46 patients) and 141 conventional restorations (44 patients). 93.7% and 97.2% of the restorations placed were considered successful in the ART and CT groups, respectively. The OHIP scores did not change dramatically 2 months after treatment, in either group. The global transition scale showed an improvement in overall oral health after treatment for the majority of patients. The ART were more cost-effective compared to the CT restorations. Conclusions: ART presented survival rates similar to CT after 1 year and was a more cost-effective alternative to treat the elderly.