2 resultados para 820
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
This thesis examines the literary output of German servicemen writers writing from the occupied territories of Europe in the period 1940-1944. Whereas literary-biographical studies and appraisals of the more significant individual writers have been written, and also a collective assessment of the Eastern front writers, this thesis addresses in addition the German literary responses in France and Greece, as being then theatres of particular cultural/ideological attention. Original papers of the writer Felix Hartlaub were consulted by the author at the Deutsches Literatur Archiv (DLA) at Marbach. Original imprints of the wartime works of the subject writers are referred to throughout, and citations are from these. As all the published works were written under conditions of wartime censorship and, even where unpublished, for fear of discovery written in oblique terms, the texts were here examined for subliminal authorial intention. The critical focus of the thesis is on literary quality: on aesthetic niveau, on applied literary form, and on integrity of authorial intention. The thesis sought to discover: (1) the extent of the literary output in book-length forms. (2) the auspices and conditions under which this literary output was produced. (3) the publication history and critical reception of the output. The thesis took into account, inter alia: (1) occupation policy as it pertained locally to the writers’ remit; (2) the ethical implications of this for the writers; (3) the writers’ literary stratagems for negotiating the constraints of censorship.
Resumo:
Nanostructured materials are central to the evolution of future electronics and biomedical applications amongst other applications. This thesis is focused on developing novel methods to prepare a number of nanostructured metal oxide particles and films by a number of different routes. Part of the aim was to see how techniques used in nanoparticle science could be applied to thin film methods to develop functional surfaces. Wet-chemical methods were employed to synthesize and modify the metal oxide nanostructures (CeO2 and SiO2) and their structural properties were characterized through advanced X-ray diffraction, electron microscopy, photoelectron spectroscopy and other techniques. Whilst particulates have uses in many applications, their attachment to surfaces is of importance and this is frequently challenging. We examined the use of block copolymer methods to form very well defined metal oxide particulate-like structures on the surface of a number of substrates. Chapter 2 describes a robust method to synthesize various sized silica nanoparticles. As-synthesized silica nanoparticles were further functionalized with IR-820 and FITC dyes. The ability to create size controlled nanoparticles with associated (optical) functionality may have significant importance in bio-medical imaging. Thesis further describes how non-organic modified fluorescent particles might be prepared using inorganic oxides. A study of the concentrations and distributions of europium dopants within the CeO2 nanoparticles was undertaken and investigated by different microscopic and spectroscopic techniques. The luminescent properties were enhanced by doping and detailed explanations are reported. Additionally, the morphological and structural evolution and optical properties were correlated as a function of concentrations of europium doping as well as with further annealing. Further work using positron annihilation spectroscopy allowed the study of vacancy type defects formed due to europium doping in CeO2 crystallites and this was supported by complimentary UV-Vis spectra and XRD work. During the last few years the interest in mesoporous silica materials has increased due to their typical characteristics such as potential ultra-low dielectric constant materials, large surface area and pore volume, well-ordered and uniform pores with adjustable pores between 2 and 50 nm. A simple, generic and cost-effective route was used to demonstrate the synthesis of 2D mesoporous silica thin films over wafer scale dimensions in chapter 5. Lithographic resist and in situ hard mask block copolymer followed by ICP dry etching were used to fabricate mesoporous silica nanostructures. The width of mesoporous silica channels can be varied by using a variety of commercially available lithographic resists whereas depth of the mesoporous silica channels can be varied by altering the etch time. The crystal structure, morphology, pore arrangement, pore diameters, thickness of films and channels were determined by XRD, SEM, ellipsometry and the results reported. This project also extended work towards the study of the antimicrobial study of nanopatterned silver nanodot arrays formed using the block copolymer approach defined above. Silver nanodot arrays were successfully tested for antimicrobial activity over S. aureus and P. aeruginosa biofilms and results shows silver nanodots has good antimicrobial activity for both S. aureus and P. aeruginosa biofilms. Thus, these silver nanodot arrays shows a potential to be used as a substitute for the resolution of infection complications in many areas.