2 resultados para 804

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rab4 is a member of the Rab superfamily of small GTPases. It is localized to the early sorting endosome and plays a role in regulating the transport from this compartment to the recycling and degradative pathways. In order to further our understanding of the role Rab4 plays in endocytosis, a yeast two-hybrid screen was performed to identify putative Rab4 effectors. A constitutively active mutant of Rab4, Rab4Q67L, when used as bait to screen a HeLa cDNA library, identified a novel 80kDa protein that interacted with Rab4-GTP. This protein was called Rab Coupling Protein (RCP). RCP interacts preferentially with the GTP-bound form of Rab4. Subsequent work demonstrated that RCP also interacts with Rab11, and that this interaction is not nucleotide-depenedent. RCP is predominantly membrane-bound and localised to the perinuclear recycling compartment. Expression of a truncation mutant of RCP, that contains the Rab binding domain, in HeLa cells, results in the formation of an extensive tubular network that can be labelled with transferrin. These tubules are derived from the recycling compartment since they are inaccessible to transferrin when the ligand is internalised at 18oC. The truncation mutant-induced morphology can be rescued by overexpression of active Rab11, but not active Rab4. This suggests that RCP functions between Rab4 and Rab11 in the receptor recycling pathway, and may act as a ‘molecular bridge’ between these two sequentially acting small GTPases. Quantitative assays demonstrated that overexpression of the truncation mutant results in a dramatic inhibition in the rate of receptor recycling. Database analysis revealed that RCP belongs to a family of Rab interacting proteins, each characterised by a carboxy-terminal coiled-coil domain and an amino-terminal phospholipid-binding domain. KIAA0941, an RCP homologue, interacts with Rab11, but not with Rab4. Overexpression of its Rab binding domain also results in a tubular network, however, this tubulation cannot be rescued by active Rab11.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aurivillius phase Bi 5Ti 3Fe 0.7Co 0.3O 15 (BTF7C3O) thin films on α-quartz substrates were fabricated by a chemical solution deposition method and the room temperature ferroelectric and magnetic properties of this candidate multiferroic were compared with those of thin films of Mn 3 substituted, Bi 5Ti 3Fe 0.7Mn 0.3O 15 (BTF7M3O). Vertical and lateral piezoresponse force microscopy (PFM) measurements of the films conclusively demonstrate that BTF7C3O and BTF7M3O thin films are piezoelectric and ferroelectric at room temperature, with the major polarization vector in the lateral plane of the films. No net magnetization was observed for the in-plane superconducting quantum interference device (SQUID) magnetometry measurements of BTF7M3O thin films. In contrast, SQUID measurements of the BTF7C3O films clearly demonstrated ferromagnetic behavior, with a remanent magnetization, B r, of 6.37 emu/cm 3 (or 804 memu/g), remanent moment 4.99 × 10 -5 emu. The BTF7C3O films were scrutinized by x-ray diffraction, high resolution transmission electron microscopy, scanning transmission electron microscopy, and energy dispersive x-ray analysis mapping to assess the prospect of the observed multiferroic properties being intrinsic to the main phase. The results of extensive micro-structural phase analysis demonstrated that the BTF7C3O films comprised of a 3.95 Fe/Co-rich spinel phase, likely CoFe 2 - xTi xO 4, which would account for the observed magnetic moment in the films. Additionally, x-ray magnetic circular dichroism photoemission electron microscopy (XMCD-PEEM) imaging confirmed that the majority of magnetic response arises from the Fe sites of Fe/Co-rich spinel phase inclusions. While the magnetic contribution from the main phase could not be determined by the XMCD-PEEM images, these data however imply that the Bi 5Ti 3Fe 0.7Co 0.3O 15 thin films are likely not single phase multiferroics at room temperature. The PFM results presented demonstrate that the naturally 2D nanostructured Bi 5Ti 3Fe 0.7Co 0.3O 15 phase is a novel ferroelectric and has potential commercial applications in high temperature piezoelectric and ferroelectric memory technologies. The implications for the conclusive demonstration of ferroelectric and ferromagnetic properties in single-phase materials of this type are discussed.