6 resultados para 400000 Journalism, Librarianship and Curatorial Studies
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The composition of equine milk differs considerably from that of the milk of the principal dairying species, i.e., the cow, buffalo, goat and sheep. Because equine milk resembles human milk in many respects and is claimed to have special therapeutic properties, it is becoming increasingly popular in Western Europe, where it is produced on large farms in several countries. Equine milk is considered to be highly digestible, rich in essential nutrients and to possess an optimum whey protein:casein ratio, making it very suitable as a substitute for bovine milk in paediatric dietetics. There is some scientific basis for the special nutritional and health-giving properties of equine milk but this study provides a comprehensive analysis of the composition and physico-chemical properties of equine milk which is required to fully exploit its potential in human nutrition. Quantification and distribution of the nitrogenous components and principal salts of equine milk are reported. The effects of the high concentration of ionic calcium, large casein micelles (~ 260 nm), low protein, lack of a sulphydryl group in equine β-lactoglobulin and a very low level of κ-casein on the physico-chemical properties of equine milk are reported. This thesis provides an insight into the stability of equine casein micelles to heat, ethanol, high pressure, rennet or acid. Differences in rennet- and acid-induced coagulation between equine and bovine milk are attributed not only to the low casein content of equine milk but also to differences in the mechanism by which the respective micelles are stabilized. It has been reported that β-casein plays a role in the stabilization of equine casein micelles and proteomic techniques support this view. In this study, equine κ-casein appeared to be resistant to hydrolysis by calf chymosin but equine β-casein was readily hydrolysed. Resolution of equine milk proteins by urea-PAGE showed the multi-phosphorylated isoforms of equine αs- and β-caseins and capillary zone electrophoresis showed 3 to 7 phosphorylated residues in equine β-casein. In vitro digestion of equine β-casein by pepsin and Corolase PP™ did not produce casomorphins BCM-5 or BCM-7, believed to be harmful to human health. Electron microscopy provided very clear, detailed images of equine casein micelles in their native state and when renneted or acidified. Equine milk formed flocs rather then a gel when renneted or acidified which is supported by dynamic oscillatory analysis. The results presented in this thesis will assist in the development of new products from equine milk for human consumption which will retain some of its unique compositional and health-giving properties.
Resumo:
The observations of Hooke (1665), Schleiden & Schwann (1839) and Virchow (1855) led to the identification of the cell as the basic structural unit of living material. In the intervening years, it has been firmly established that the chemical processes which underlie the proper functioning, development and reproduction of the organism are cellular activities. The development of the electron microscope has enabled cell structure to be studied in detail. A picture of the cell as an entity with a complex and highly organised internal structure has emerged from the work of Palade, Porter, Fernandez-Moran and many others. Although cells from different tissues and organisms differ in aspects of their structure and consequently in function, they have several features in common. A retentive membrane encloses a number of cell constituents, which include membrane-enclosed subcellular structures known as organelles. The cells of most tissues also contain a reticulum or system of branching tubules. The interplay of the biochemical activities of these structures enables the cell to function. Almost thirty years ago, Claude, Palade, Schneider, Hogeboom, de Duve and others set out to analytically fractionate the subcellular components obtained after the fragmentation of liver cells. This approach has become known as subcellular fractionation, and signalled a major conceptual breakthrough in biochemistry (reviewed by de Duve, 1964, 1967, 1971). The significance of this breakthrough has been underlined by the award of the 1974 Nobel Prize in Medicine to de Duve, Palade and Claude. This thesis is concerned with the application of subcellular fractionation techniques to the separation and characterisation of the membrane systems of the rabbit skeletal muscle cell.
Resumo:
Numerous laboratory experiments have been performed in an attempt to mimic atmospheric secondary organic aerosol (SOA) formation. However, it is still unclear how close the aerosol particles generated in laboratory experiments resemble atmospheric SOA with respect to their detailed chemical composition. In this study, we generated SOA in a simulation chamber from the ozonolysis of α-pinene and a biogenic volatile organic compound (BVOC) mixture containing α- and β-pinene, Δ3-carene, and isoprene. The detailed molecular composition of laboratory-generated SOA was compared with that of background ambient aerosol collected at a boreal forest site (Hyytiälä, Finland) and an urban location (Cork, Ireland) using direct infusion nanoelectrospray ultrahigh resolution mass spectrometry. Kendrick Mass Defect and Van Krevelen approaches were used to identify and compare compound classes and distributions of the detected species. The laboratory-generated SOA contained a distinguishable group of dimers that was not observed in the ambient samples. The presence of dimers was found to be less pronounced in the SOA from the VOC mixtures when compared to the one component precursor system. The elemental composition of the compounds identified in the monomeric region from the ozonolysis of both α-pinene and VOC mixtures represented the ambient organic composition of particles collected at the boreal forest site reasonably well, with about 70% of common molecular formulae. In contrast, large differences were found between the laboratory-generated BVOC samples and the ambient urban sample. To our knowledge this is the first direct comparison of molecular composition of laboratory-generated SOA from BVOC mixtures and ambient samples.
Resumo:
Practical realisation of quantum information science is a challenge being addressed by researchers employing various technologies. One of them is based on quantum dots (QD), usually referred to as artificial atoms. Being capable to emit single and polarization entangled photons, they are attractive as sources of quantum bits (qubits) which can be relatively easily integrated into photonic circuits using conventional semiconductor technologies. However, the dominant self-assembled QD systems suffer from asymmetry related problems which modify the energetic structure. The main issue is the degeneracy lifting (the fine-structure splitting, FSS) of an optically allowed neutral exciton state which participates in a polarization-entanglement realisation scheme. The FSS complicates polarization-entanglement detection unless a particular FSS manipulation technique is utilized to reduce it to vanishing values, or a careful selection of intrinsically good candidates from the vast number of QDs is carried out, preventing the possibility of constructing vast arrays of emitters on the same sample. In this work, site-controlled InGaAs QDs grown on (111)B oriented GaAs substrates prepatterned with 7.5 μm pitch tetrahedrons were studied in order to overcome QD asymmetry related problems. By exploiting an intrinsically high rotational symmetry, pyramidal QDs were shown as polarization-entangled photon sources emitting photons with the fidelity of the expected maximally entangled state as high as 0.721. It is the first site-controlled QD system of entangled photon emitters. Moreover, the density of such emitters was found to be as high as 15% in some areas: the density much higher than in any other QD system. The associated physical phenomena (e.g., carrier dynamic, QD energetic structure) were studied, as well, by different techniques: photon correlation spectroscopy, polarization-resolved microphotoluminescence and magneto-photoluminescence.
Resumo:
Soft X-ray transients (SXTs) are a subgroup of low-mass X-ray binaries consisting of a neutron star or a black hole and a companion low-mass star. SXTs exhibit a sudden outburst by increasing the luminosity from ∼ 1033 to ∼ 1036−38ergs1. After spending a few months in outburst, SXTs switch back to quiescence. Optical study of the binary system during the quiescence state of SXTs provides an opportunity to discriminate between BH binaries and neutron star binaries. The first part ot this research is composed of result of 10 years joint project between Hubble space telescope and Chandra, to study SXTs in M31. The other part of this thesis focused on the light curve of bright SXTs in M31. Disc irradiation is thought to be capable of explaining the global behaviour of the light curves of SXTs. Depending on the strength of the central X-ray emission in irradiating the disc, the light curve may exhibit an exponential or a linear decay. The model predicts that in brighter transients a transition from exponential decline to a linear one may be detectable. In this study, having excluded super-soft sources and hard X-ray transients, a sample of bright SXTs in M31 (Lpeak > 1038ergs1) has been studied. The expected change in the shape of the decay function is only observed in two of the light curves from the six light curves in the sample. Also, a systematic correlation between the shape of the light curve and the X-ray luminosity has not been seen.
Resumo:
The majority of active pharmaceutical ingredients (APIs) are crystalline solids in their pure forms. Crystalline solids have definable morphologies, i.e. shape and size. Crystal morphology is determined by both the internal structure of the crystals and external factors during growth from solution. The morphology of a crystal batch can affect key processes during manufacturing. Companies generally accept whatever morphology the manufacturing process provides and deal with any subsequent problems by costly trouble‒shooting. Rational design of optimised morphologies for crystalline pharmaceutical solids would be a very significant technical and commercial advance. Chapter one introduces the concept of crystal nucleation and growth. The phenomenon of polymorphism alongside the causes and impact is discussed. A summary of the scope of instrumentation used in the investigation of crystal polymorphism and morphology, including crystal size distribution (CSD), is also included. Chapter two examines the research carried out during an exploration of the optimum crystallisation parameters of phenacetin. Following a morphological study, the impact this induces on particle density and flow properties is examined. The impact of impurities on the crystallisation properties of phenacetin is investigated. Significantly, the location of impurities within individual crystals is also studied. The third chapter describes an industrial collaboration looking at the resolution and polymorphic study of trometamol and lysine salts of ketoprofen and 2‒phenylpropionic acid (2‒PPA). Chapter four incorporates a solid state study on three separate compounds: 2‒chloro‒4‒nitroaniline, 4‒hydroxy‒N‒phenylbenzenesulfonamide and N‒acetyl‒D‒glucosamine‒6‒O‒sulfate. 2‒Chloro‒4‒nitroaniline and 4‒hydroxy‒N‒phenylbenzenesulfonamide both produced interesting, extreme morphologies which warranted further investigation as part of a collaborative study. Following a summarisation of results in chapter five, chapter six contains the full experimental details, incorporating spectral and other analytical data for all compounds synthesised during the course of the research.