4 resultados para 3D object recognition system
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
We describe a 42.6 Gbit/s all-optical pattern recognition system which uses semiconductor optical amplifiers (SOAs). A circuit with three SOA-based logic gates is used to identify the presence of specific port numbers in an optical packet header.
Resumo:
This work performs an extensive charterisation of precision targeted throwing in professional and recreational darts. The goal is to identify the contributing factors for lateral drift or throwing inaccuracy in the horizontal plane. A multitechnology approach is adopted whereby a custom built body area network of wireless inertial measurement devices monitor tilt, force and timing, an optical 3D motion capture system provides a complete kinematic model of the subject, electromyography sensors monitor muscle activation patterns and a force plate and pressure mat capture tactile pressure and force measurements. The study introduces the concept of constant throwing rhythm and highlights how landing errors in the horizontal plane can be attributable to a number of variations in arm force and speed, centre of gravity and the movements of some of the bodies non throw related extremities.
Resumo:
This work employs a custom built body area network of wireless inertial measurement technology to conduct a biomechanical analysis of precision targeted throwing in competitive and recreational darts. The solution is shown to be capable of measuring key biomechanical factors including speed, acceleration and timing. These parameters are subsequently correlated with scoring performance to determine the affect each variable has on outcome. For validation purposes an optical 3D motion capture system provides a complete kinematic model of the subject and enables concurrent benchmarking of the 'gold standard' optical inertial measurement system with the more affordable and proactive wireless inertial measurement solution developed as part of this work.
Resumo:
A certain type of bacterial inclusion, known as a bacterial microcompartment, was recently identified and imaged through cryo-electron tomography. A reconstructed 3D object from single-axis limited angle tilt-series cryo-electron tomography contains missing regions and this problem is known as the missing wedge problem. Due to missing regions on the reconstructed images, analyzing their 3D structures is a challenging problem. The existing methods overcome this problem by aligning and averaging several similar shaped objects. These schemes work well if the objects are symmetric and several objects with almost similar shapes and sizes are available. Since the bacterial inclusions studied here are not symmetric, are deformed, and show a wide range of shapes and sizes, the existing approaches are not appropriate. This research develops new statistical methods for analyzing geometric properties, such as volume, symmetry, aspect ratio, polyhedral structures etc., of these bacterial inclusions in presence of missing data. These methods work with deformed and non-symmetric varied shaped objects and do not necessitate multiple objects for handling the missing wedge problem. The developed methods and contributions include: (a) an improved method for manual image segmentation, (b) a new approach to 'complete' the segmented and reconstructed incomplete 3D images, (c) a polyhedral structural distance model to predict the polyhedral shapes of these microstructures, (d) a new shape descriptor for polyhedral shapes, named as polyhedron profile statistic, and (e) the Bayes classifier, linear discriminant analysis and support vector machine based classifiers for supervised incomplete polyhedral shape classification. Finally, the predicted 3D shapes for these bacterial microstructures belong to the Johnson solids family, and these shapes along with their other geometric properties are important for better understanding of their chemical and biological characteristics.