5 resultados para 3-SUBSTITUTED LACTAMS
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Aurivillius phase Bi 5Ti 3Fe 0.7Co 0.3O 15 (BTF7C3O) thin films on α-quartz substrates were fabricated by a chemical solution deposition method and the room temperature ferroelectric and magnetic properties of this candidate multiferroic were compared with those of thin films of Mn 3 substituted, Bi 5Ti 3Fe 0.7Mn 0.3O 15 (BTF7M3O). Vertical and lateral piezoresponse force microscopy (PFM) measurements of the films conclusively demonstrate that BTF7C3O and BTF7M3O thin films are piezoelectric and ferroelectric at room temperature, with the major polarization vector in the lateral plane of the films. No net magnetization was observed for the in-plane superconducting quantum interference device (SQUID) magnetometry measurements of BTF7M3O thin films. In contrast, SQUID measurements of the BTF7C3O films clearly demonstrated ferromagnetic behavior, with a remanent magnetization, B r, of 6.37 emu/cm 3 (or 804 memu/g), remanent moment 4.99 × 10 -5 emu. The BTF7C3O films were scrutinized by x-ray diffraction, high resolution transmission electron microscopy, scanning transmission electron microscopy, and energy dispersive x-ray analysis mapping to assess the prospect of the observed multiferroic properties being intrinsic to the main phase. The results of extensive micro-structural phase analysis demonstrated that the BTF7C3O films comprised of a 3.95 Fe/Co-rich spinel phase, likely CoFe 2 - xTi xO 4, which would account for the observed magnetic moment in the films. Additionally, x-ray magnetic circular dichroism photoemission electron microscopy (XMCD-PEEM) imaging confirmed that the majority of magnetic response arises from the Fe sites of Fe/Co-rich spinel phase inclusions. While the magnetic contribution from the main phase could not be determined by the XMCD-PEEM images, these data however imply that the Bi 5Ti 3Fe 0.7Co 0.3O 15 thin films are likely not single phase multiferroics at room temperature. The PFM results presented demonstrate that the naturally 2D nanostructured Bi 5Ti 3Fe 0.7Co 0.3O 15 phase is a novel ferroelectric and has potential commercial applications in high temperature piezoelectric and ferroelectric memory technologies. The implications for the conclusive demonstration of ferroelectric and ferromagnetic properties in single-phase materials of this type are discussed.
Resumo:
The objective of this project was to prepare a range of 4-substituted 3-(2H)-furanones, and to investigate the relationship between their molecular structures and photoluminescence properties. The effects of substituents and conjugated linker unit were also investigated. After generation of the key 3(2H)-furanone heterocycle, extension of the conjugated framework at the C-4 position was achieved through Pd(0)-catalysed coupling reactions. Chapter one of the thesis comprises a review of the relavent literature and is split into three sections. These include information about the prevalence of 3-(2H)-furanones as natural products and synthetic routes to 3-(2H)-furanones in general. The synthetic routes are divided according to the synthetic precursor employed. The final section of chapter one outlines the fundamental principles and application of photoluminescence to organic compounds in general. Chapter two contains the results of the research achieved in the course of this work and a discussion of the findings. Two routes were successfully employed to generate 4-unsubstituted 3-(2H)-furanone moieties: (i) base induced cyclisation of hydroxyenones and (ii) isoxazole chemistry. A number of methods which proved ineffective in the production of furanones with the desired substitution pattern are also detailed. The majority of this study was focused on the introduction of substituents at the C-4 position of the 3-(2H)-furanone ring. This was achieved through the use of Sonogashira and Suzuki cross coupling protocols for Pd(0) catalysed C-C bond formation. The further functionalisation of some compounds was performed using transfer hydrogenation and “click chemistry” methodologies. Finally, the photophysical properties of 3-(2H)-furanones prepared in this project are discussed and the effect of substitution patterns in a complementary “push push” and “push pull” manner have also been investigated. All the experimental data and details of the synthetic methods employed, for the compounds prepared during the course of this research is contained in chapter three together with the spectroscopic and analytical properties of the compounds prepared.
Resumo:
The primary objective of this thesis was the preparation of a series of pyridine-containing α-diazocarbonyl compounds and subsequent investigation of the reactivity of these compounds on exposure to transition metal catalysts. In particular, the reactivity of the pyridyl α-diazocarbonyls was compared to that of the analogous phenyl α-diazocarbonyl compounds to ascertain the impact of replacement of the phenyl ring with pyridine. The first chapter initially provides a brief introduction into α-diazocarbonyl chemistry, comprising a compendium of well-established and recently developed methods in the preparation of these compounds, as well as an outline of the reactivity of these versatile substrates. The substantive element of this introductory chapter comprises a detailed review focused on transition metal-catalysed transformations of heterocyclic α-diazocarbonyl compounds, highlighting the extraordinary diversity of reaction products which can be accessed. This review is undertaken to set the work of this thesis in context. The results of this research are discussed in the second and third chapters together with the associated experimental details, including spectroscopic and analytical data obtained in the synthesis of all compounds during this research. The second chapter describes the preparation of a range of novel pyridine-containing α-diazocarbonyl compounds via a number of synthetic strategies including both acylation and diazo transfer methodologies. In contrast to the phenyl analogues, the generation of the pyridine α-diazocarbonyl substrates was complicated by a number of factors including the inherent basicity of the pyridine ring, tautomerism and existence of rotamers. Rhodium- and copper-mediated transformations of the pyridine-containing α-diazocarbonyl compounds is discussed in detail displaying very different reactivity patterns to those seen with the phenyl analogues; oxidation to 2,3- diketones, 1,2-hydride shift to form enones and oxonium and sulfonium ylide formation/rearrangement are prominent in the pyridyl series, with no evidence of aromatic addition to the pyridine ring. The third chapter focuses on exploration of novel chiral rhodium(II) catalysts, developed in the Maguire team, in both intermolecular cyclopropanations and intramolecular C–H insertion reactions. In this chapter, the studies are focused on standard α-diazocarbonyl compounds without heteroaryl substituents. The most notable outcome was the achievement of high enantiopurities for intramolecular C–H insertions, which were competitive with, and even surpassed, established catalyst systems in some cases. This work has provided insight into solvent and temperature effects on yields as well as enantio- and diastereoselectivity, thereby providing guidance for future development and design of chiral rhodium carboxylate catalysts. While this is a preliminary study, the significance of the results lie in the fact that these are the first reactions to give substantial asymmetric induction with these novel rhodium carboxylates. While the majority of the α-diazocarbonyl compounds explored in this work were α-diazoketones, a number of α-diazoesters are also described. Details of chiral stationary phase HPLC analysis, single crystal analysis and 2D NMR experiments are included in the Appendix (Appendix III-V).
Resumo:
The subject matter of this thesis relates to the chemistry of the five-membered oxygen heterocycles – 3(2H)-furanones and their 4, 5-dihydro analogues. Chapter one of the thesis is a review of the relevant chemistry of the compounds: their synthesis and key transformations. In chapter two, new research on 3(2H)-furanones is outlined in two parts. The first describes an investigation into the cyclisation of α'-trialkylsilyloxyenone adducts with arenesulfenyl and selenenyl chlorides into the corresponding sulfur and selenium substituted 3(2H)-furanones without the involvement of a Lewis acid catalyst. The study, largely involving in situ NMR techniques, identified key features associated with the formation and reaction of the chlorosulfide and chloroselenide intermediates, including operation of the Thorpe-Ingold effect. The knowledge gained in this study was applied (the second part) to the synthesis of vinyl substituted furanone systems from α'-trialkylsilyloxydienones where choice of the reaction conditions and electrophilic reagent was a key feature. An important difference in the behaviour of arenesulfenyl and selenenyl halides towards conjugated dienes emerged from this work. This phase of the research concluded with a new synthesis of geiparvarin, a natural product possessing anti-tumour properties.
Resumo:
A large number of optically active drugs and natural products contain α-functionalised ketones or simple derivatives thereof. Furthermore, chiral α-alkylated ketones are useful synthons and have found widespread use in total synthesis. The asymmetric alkylation of ketones represents one of the most powerful and longstanding procedures in organic chemistry. Surprisingly, however, only one effective methodology is available, and this involves the use of chiral auxiliaries. This is discussed in Chapter 1, which also provides a background of other key topics discussed throughout the thesis. Expanding on the existing methodology of chiral auxiliaries, Chapter 2 details the synthesis of a novel chiral auxiliary containing a pyrrolidine ring and its use in the asymmetric preparation of α-alkylated ketones with good enantioselectivity. The synthesis of racemic α-alkylated ketones as reference standards for GC chromatography is also reported in this chapter. Chapter 3 details a new approach to chiral α-alkylated ketones using an intermolecular chirality transfer methodology. This approach employs the use of simple non-chiral dimethylhydrazones and their asymmetric alkylation using the chiral diamine ligands, (+)- and (-)-sparteine. The methodology described represents the first example of an asymmetric alkylation of non-chiral azaenolates. Enantiomeric ratios up to 83 : 17 are observed. Chapter 4 introduces the first aldol-Tishchenko reaction of an imine derivative for the preparation of 1,3-aminoalcohol precursors. 1,3-Aminoalcohols can be synthesised via indirect routes involving various permutations of stepwise construction with asymmetric induction. Our approach offers an alternative highly diastereomeric route to the synthesis of this important moiety utilising N-tert-butanesulfinyl imines in an aldol-Tishchenko-type reaction. Chapter 5 details the experimental procedures for all of the above work. Chapter 6 discusses the results of a separate research project undertaken during this PhD. 2-alkyl-quinolin-4-ones and their N-substituted derivatives have several important biological functions such as the role of Pseudomonas quinolone signal (PQS) in quorum sensing. Herein, we report the synthesis of its biological precursor, 2-heptyl-4-hydroxy-quinoline (HHQ) and possible isosteres of PQS; the C-3 Cl, Br and I analogues. N-Methylation of the iodide was also feasible and the usefulness of this compound showcased in Pd-catalysed cross-coupling reactions, thus allowing access to a diverse set of biologically important molecules.