2 resultados para 3-Hydroxytetrahydrofurans
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The research described in this thesis is concerned with the synthesis and stereoselective transformations of 4,5-dihydro-3(2H)-furanones and their 3-hydroxy derivatives. In Chapter 1, a review of synthetic routes to 3-hydroxytetrahydrofurans is presented. This incorporates the wide range of applications for these types of compounds. Preparative routes to and stereoselective transformations of the furanones investigated in this study are discussed in Chapter 2. The bulk of the work centers on stereoselective carbonyl group reductions to generate the 3-hydroxytetrahydrofuran derivatives in racemic form followed by kinetic resolution via lipase mediated esterification, resulting in enantioenriched 3-acetoxy and 3-hydroxytetrahydrofuran derivatives. In many cases, these processes proceed in a highly enantioselective manner. The influence of the lipase species and concentration of enzyme employed on the yield and stereochemical outcome of the reactions is examined in detail. Access to the complementary series of furanone and hydroxytetrahydrofuran derivatives by oxidation or reduction of the enantioenriched compounds was achieved through conventional synthetic methods. Chapter 2 also contains details of a novel synthetic route to a range of 2,3,5-trisubstituted furans from α-hydroxyenones and 4,5-dihydro-3(2H)-furanones. The mechanistic rationale for these transformations and the migratory aptitude of alkyl groups towards the formation of these furans is discussed in detail. Finally, Chapter 2 outlines the synthesis of a series of diarylcyclopentenones that were synthesised as part of our investigations. Chapter 3 contains a description of the synthetic procedures and biotransformations carried out together with key analytical and spectroscopic properties of the compounds studied and where appropriate, their analysis using chiral HPLC analysis.
Resumo:
Muscarine was identified as an active principle of the poisonous mushroom Amanita muscaria over 170 years ago and has been identified as an agonist of acetylcholine. The synthesis of all stereoisomers of muscarine have been accomplished at this stage by chemical methods and the biological activity of these compounds tested. A number of synthetic routes to enantiomerically pure muscarine and its analogues have been published. In this work, we are focussed on the use of a novel biotransformation strategy to access these compounds. Asymmetric synthesis involves targeting a synthetic pathway leading to one enantiomer of a compound and biocatalysis is one strategy used in asymmetric synthesis. Chapter 1 consists of a review of the relevant literature pertaining to the synthesis and stereoselective transformations of 3-hydroxytetrahydrofuranss. A review of synthetic routes to these compounds is presented, with a particular focus on routes to the natural product muscarine and its analogues. Chapter 2 discusses the preparative routes to the 3-hydroxytetrahydrofurans via 3(2H)- furanones. Steps amongst which include Rh(II) mediate cyclisation and kinetic resolution via baker’s yeast mediated carbonyl reduction, resulting in enantioenriched 3- hydroxytetrahydrofuran derivatives. Finally, application of this methodology to the preparation of all four enantiomers of an analogue of desmethylmuscarine and the synthesis of epimuscarine is described. Chapter 3 consists of a detailed experimental section outlining the synthetic procedures employed.