4 resultados para 3-DIMENSIONAL MONOLAYERS

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The bottom-up colloidal synthesis of photonic crystals has attracted interest over top-down approaches due to their relatively simplicity, the potential to produce large areas, and the low-costs with this approach in fabricating complex 3-dimensional structures. This thesis focuses on the bottom-up approach in the fabrication of polymeric colloidal photonic crystals and their subsequent modification. Poly(methyl methacrylate) sub-micron spheres were used to produce opals, inverse opals and 3D metallodielectric photonic crystal (MDPC) structures. The fabrication of MDPCs with Au nanoparticles attached to the PMMA spheres core–shell particles is described. Various alternative procedures for the fabrication of photonic crystals and MDPCs are described and preliminary results on the use of an Au-based MDPC for surface-enhanced Raman scattering (SERS) are presented. These preliminary results suggest a threefold increase of the Raman signal with the MDPC as compared to PMMA photonic crystals. The fabrication of PMMA-gold and PMMA-nickel MDPC structures via an optimised electrodeposition process is described. This process results in the formation of a continuous dielectric-metal interface throughout a 3D inverted photonic crystal structure, which are shown to possess interesting optical properties. The fabrication of a robust 3D silica inverted structure with embedded Au nanoparticles is described by a novel co-crystallisation method which is capable of creating a SiO2/Au NP composite structure in a single step process. Although this work focuses on the creation of photonic crystals, this co-crystallisation approach has potential for the creation of other functional materials. A method for the fabrication of inverted opals containing silicon nanoparticles using aerosol assisted chemical vapour deposition is described. Silicon is a high dielectric material and nanoparticles of silicon can improve the band gap and absorption properties of the resulting structure, and therefore have the potential to be exploited in photovoltaics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction: Computer-Aided-Design (CAD) and Computer-Aided-Manufacture (CAM) has been developed to fabricate fixed dental restorations accurately, faster and improve cost effectiveness of manufacture when compared to the conventional method. Two main methods exist in dental CAD/CAM technology: the subtractive and additive methods. While fitting accuracy of both methods has been explored, no study yet has compared the fabricated restoration (CAM output) to its CAD in terms of accuracy. The aim of this present study was to compare the output of various dental CAM routes to a sole initial CAD and establish the accuracy of fabrication. The internal fit of the various CAM routes were also investigated. The null hypotheses tested were: 1) no significant differences observed between the CAM output to the CAD and 2) no significant differences observed between the various CAM routes. Methods: An aluminium master model of a standard premolar preparation was scanned with a contact dental scanner (Incise, Renishaw, UK). A single CAD was created on the scanned master model (InciseCAD software, V2.5.0.140, UK). Twenty copings were then fabricated by sending the single CAD to a multitude of CAM routes. The copings were grouped (n=5) as: Laser sintered CoCrMo (LS), 5-axis milled CoCrMo (MCoCrMo), 3-axis milled zirconia (ZAx3) and 4-axis milled zirconia (ZAx4). All copings were micro-CT scanned (Phoenix X-Ray, Nanotom-S, Germany, power: 155kV, current: 60µA, 3600 projections) to produce 3-Dimensional (3D) models. A novel methodology was created to superimpose the micro-CT scans with the CAD (GOM Inspect software, V7.5SR2, Germany) to indicate inaccuracies in manufacturing. The accuracy in terms of coping volume was explored. The distances from the surfaces of the micro-CT 3D models to the surfaces of the CAD model (CAD Deviation) were investigated after creating surface colour deviation maps. Localised digital sections of the deviations (Occlusal, Axial and Cervical) and selected focussed areas were then quantitatively measured using software (GOM Inspect software, Germany). A novel methodology was also explored to digitally align (Rhino software, V5, USA) the micro-CT scans with the master model to investigate internal fit. Fifty digital cross sections of the aligned scans were created. Point-to-point distances were measured at 5 levels at each cross section. The five levels were: Vertical Marginal Fit (VF), Absolute Marginal Fit (AM), Axio-margin Fit (AMF), Axial Fit (AF) and Occlusal Fit (OF). Results: The results of the volume measurement were summarised as: VM-CoCrMo (62.8mm3 ) > VZax3 (59.4mm3 ) > VCAD (57mm3 ) > VZax4 (56.1mm3 ) > VLS (52.5mm3 ) and were all significantly different (p presented as areas with different colour. No significant differences were observed at the internal aspect of the cervical aspect between all groups of copings. Significant differences (p< M-CoCrMo Internal Occlusal, Internal Axial and External Axial 2 ZAx3 > ZAx4 External Occlusal, External Cervical 3 ZAx3 < ZAx4 Internal Occlusal 4 M-CoCrMo > ZAx4 Internal Occlusal and Internal Axial The mean values of AMF and AF were significantly (p M-CoCrMo and CAD > ZAx4. Only VF of M-CoCrMo was comparable with the CAD Internal Fit. All VF and AM values were within the clinically acceptable fit (120µm). Conclusion: The investigated CAM methods reproduced the CAD accurately at the internal cervical aspect of the copings. However, localised deviations at axial and occlusal aspects of the copings may suggest the need for modifications in these areas prior to fitting and veneering with porcelain. The CAM groups evaluated also showed different levels of Internal Fit thus rejecting the null hypotheses. The novel non-destructive methodologies for CAD/CAM accuracy and internal fit testing presented in this thesis may be a useful evaluation tool for similar applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis I present the work done during my PhD in the area of low dimensional quantum gases. The chapters of this thesis are self contained and represent individual projects which have been peer reviewed and accepted for publication in respected international journals. Various systems are considered, the first of which is a two particle model which possesses an exact analytical solution. I investigate the non-classical correlations that exist between the particles as a function of the tunable properties of the system. In the second work I consider the coherences and out of equilibrium dynamics of a one-dimensional Tonks-Girardeau gas. I show how the coherence of the gas can be inferred from various properties of the reduced state and how this may be observed in experiments. I then present a model which can be used to probe a one-dimensional Fermi gas by performing a measurement on an impurity which interacts with the gas. I show how this system can be used to observe the so-called orthogonality catastrophe using modern interferometry techniques. In the next chapter I present a simple scheme to create superposition states of particles with special emphasis on the NOON state. I explore the effect of inter-particle interactions in the process and then characterise the usefulness of these states for interferometry. Finally I present my contribution to a project on long distance entanglement generation in ion chains. I show how carefully tuning the environment can create decoherence-free subspaces which allows one to create and preserve entanglement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integrated nanowire electrodes that permit direct, sensitive and rapid electrochemical based detection of chemical and biological species are a powerful emerging class of sensor devices. As critical dimensions of the electrodes enter the nanoscale, radial analyte diffusion profiles to the electrode dominate with a corresponding enhancement in mass transport, steady-state sigmoidal voltammograms, low depletion of target molecules and faster analysis. To optimise these sensors it is necessary to fully understand the factors that influence performance limits including: electrode geometry, electrode dimensions, electrode separation distances (within nanowire arrays) and diffusional mass transport. Therefore, in this thesis, theoretical simulations of analyte diffusion occurring at a variety of electrode designs were undertaken using Comsol Multiphysics®. Sensor devices were fabricated and corresponding experiments were performed to challenge simulation results. Two approaches for the fabrication and integration of metal nanowire electrodes are presented: Template Electrodeposition and Electron-Beam Lithography. These approaches allow for the fabrication of nanowires which may be subsequently integrated at silicon chip substrates to form fully functional electrochemical devices. Simulated and experimental results were found to be in excellent agreement validating the simulation model. The electrochemical characteristics exhibited by nanowire electrodes fabricated by electronbeam lithography were directly compared against electrochemical performance of a commercial ultra-microdisc electrode. Steady-state cyclic voltammograms in ferrocenemonocarboxylic acid at single ultra-microdisc electrodes were observed at low to medium scan rates (≤ 500 mV.s-1). At nanowires, steady-state responses were observed at ultra-high scan rates (up to 50,000 mV.s-1), thus allowing for much faster analysis (20 ms). Approaches for elucidating faradaic signal without the requirement for background subtraction were also developed. Furthermore, diffusional process occurring at arrays with increasing inter-electrode distance and increasing number of nanowires were explored. Diffusion profiles existing at nanowire arrays were simulated with Comsol Multiphysics®. A range of scan rates were modelled, and experiments were undertaken at 5,000 mV.s-1 since this allows rapid data capture required for, e.g., biomedical, environmental and pharmaceutical diagnostic applications.