5 resultados para 280406 Mathematical Software
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
This thesis is focused on the design and development of an integrated magnetic (IM) structure for use in high-power high-current power converters employed in renewable energy applications. These applications require low-cost, high efficiency and high-power density magnetic components and the use of IM structures can help achieve this goal. A novel CCTT-core split-winding integrated magnetic (CCTT IM) is presented in this thesis. This IM is optimized for use in high-power dc-dc converters. The CCTT IM design is an evolution of the traditional EE-core integrated magnetic (EE IM). The CCTT IM structure uses a split-winding configuration allowing for the reduction of external leakage inductance, which is a problem for many traditional IM designs, such as the EE IM. Magnetic poles are incorporated to help shape and contain the leakage flux within the core window. These magnetic poles have the added benefit of minimizing the winding power loss due to the airgap fringing flux as they shape the fringing flux away from the split-windings. A CCTT IM reluctance model is developed which uses fringing equations to accurately predict the most probable regions of fringing flux around the pole and winding sections of the device. This helps in the development of a more accurate model as it predicts the dc and ac inductance of the component. A CCTT IM design algorithm is developed which relies heavily on the reluctance model of the CCTT IM. The design algorithm is implemented using the mathematical software tool Mathematica. This algorithm is modular in structure and allows for the quick and easy design and prototyping of the CCTT IM. The algorithm allows for the investigation of the CCTT IM boxed volume with the variation of input current ripple, for different power ranges, magnetic materials and frequencies. A high-power 72 kW CCTT IM prototype is designed and developed for use in an automotive fuelcell-based drivetrain. The CCTT IM design algorithm is initially used to design the component while 3D and 2D finite element analysis (FEA) software is used to optimize the design. Low-cost and low-power loss ferrite 3C92 is used for its construction, and when combined with a low number of turns results in a very efficient design. A paper analysis is undertaken which compares the performance of the high-power CCTT IM design with that of two discrete inductors used in a two-phase (2L) interleaved converter. The 2L option consists of two discrete inductors constructed from high dc-bias material. Both topologies are designed for the same worst-case phase current ripple conditions and this ensures a like-for-like comparison. The comparison indicates that the total magnetic component boxed volume of both converters is similar while the CCTT IM has significantly lower power loss. Experimental results for the 72 kW, (155 V dc, 465 A dc input, 420 V dc output) prototype validate the CCTT IM concept where the component is shown to be 99.7 % efficient. The high-power experimental testing was conducted at General Motors advanced technology center in Torrence, Los Angeles. Calorific testing was used to determine the power loss in the CCTT IM component. Experimental 3.8 kW results and a 3.8 kW prototype compare and contrast the ferrite CCTT IM and high dc-bias 2L concepts over the typical operating range of a fuelcell under like-for-like conditions. The CCTT IM is shown to perform better than the 2L option over the entire power range. An 8 kW ferrite CCTT IM prototype is developed for use in photovoltaic (PV) applications. The CCTT IM is used in a boost pre-regulator as part of the PV power stage. The CCTT IM is compared with an industry standard 2L converter consisting of two discrete ferrite toroidal inductors. The magnetic components are compared for the same worst-case phase current ripple and the experimental testing is conducted over the operation of a PV panel. The prototype CCTT IM allows for a 50 % reduction in total boxed volume and mass in comparison to the baseline 2L option, while showing increased efficiency.
Resumo:
In this PhD study, mathematical modelling and optimisation of granola production has been carried out. Granola is an aggregated food product used in breakfast cereals and cereal bars. It is a baked crispy food product typically incorporating oats, other cereals and nuts bound together with a binder, such as honey, water and oil, to form a structured unit aggregate. In this work, the design and operation of two parallel processes to produce aggregate granola products were incorporated: i) a high shear mixing granulation stage (in a designated granulator) followed by drying/toasting in an oven. ii) a continuous fluidised bed followed by drying/toasting in an oven. In addition, the particle breakage of granola during pneumatic conveying produced by both a high shear granulator (HSG) and fluidised bed granulator (FBG) process were examined. Products were pneumatically conveyed in a purpose built conveying rig designed to mimic product conveying and packaging. Three different conveying rig configurations were employed; a straight pipe, a rig consisting two 45° bends and one with 90° bend. It was observed that the least amount of breakage occurred in the straight pipe while the most breakage occurred at 90° bend pipe. Moreover, lower levels of breakage were observed in two 45° bend pipe than the 90° bend vi pipe configuration. In general, increasing the impact angle increases the degree of breakage. Additionally for the granules produced in the HSG, those produced at 300 rpm have the lowest breakage rates while the granules produced at 150 rpm have the highest breakage rates. This effect clearly the importance of shear history (during granule production) on breakage rates during subsequent processing. In terms of the FBG there was no single operating parameter that was deemed to have a significant effect on breakage during subsequent conveying. A population balance model was developed to analyse the particle breakage occurring during pneumatic conveying. The population balance equations that govern this breakage process are solved using discretization. The Markov chain method was used for the solution of PBEs for this process. This study found that increasing the air velocity (by increasing the air pressure to the rig), results in increased breakage among granola aggregates. Furthermore, the analysis carried out in this work provides that a greater degree of breakage of granola aggregates occur in line with an increase in bend angle.
Resumo:
The class of all Exponential-Polynomial-Trigonometric (EPT) functions is classical and equal to the Euler-d’Alembert class of solutions of linear differential equations with constant coefficients. The class of non-negative EPT functions defined on [0;1) was discussed in Hanzon and Holland (2010) of which EPT probability density functions are an important subclass. EPT functions can be represented as ceAxb, where A is a square matrix, b a column vector and c a row vector where the triple (A; b; c) is the minimal realization of the EPT function. The minimal triple is only unique up to a basis transformation. Here the class of 2-EPT probability density functions on R is defined and shown to be closed under a variety of operations. The class is also generalised to include mixtures with the pointmass at zero. This class coincides with the class of probability density functions with rational characteristic functions. It is illustrated that the Variance Gamma density is a 2-EPT density under a parameter restriction. A discrete 2-EPT process is a process which has stochastically independent 2-EPT random variables as increments. It is shown that the distribution of the minimum and maximum of such a process is an EPT density mixed with a pointmass at zero. The Laplace Transform of these distributions correspond to the discrete time Wiener-Hopf factors of the discrete time 2-EPT process. A distribution of daily log-returns, observed over the period 1931-2011 from a prominent US index, is approximated with a 2-EPT density function. Without the non-negativity condition, it is illustrated how this problem is transformed into a discrete time rational approximation problem. The rational approximation software RARL2 is used to carry out this approximation. The non-negativity constraint is then imposed via a convex optimisation procedure after the unconstrained approximation. Sufficient and necessary conditions are derived to characterise infinitely divisible EPT and 2-EPT functions. Infinitely divisible 2-EPT density functions generate 2-EPT Lévy processes. An assets log returns can be modelled as a 2-EPT Lévy process. Closed form pricing formulae are then derived for European Options with specific times to maturity. Formulae for discretely monitored Lookback Options and 2-Period Bermudan Options are also provided. Certain Greeks, including Delta and Gamma, of these options are also computed analytically. MATLAB scripts are provided for calculations involving 2-EPT functions. Numerical option pricing examples illustrate the effectiveness of the 2-EPT approach to financial modelling.
Resumo:
This thesis critically investigates the divergent international approaches to the legal regulation of the patentability of computer software inventions, with a view to identifying the reforms necessary for a certain, predictable and uniform inter-jurisdictional system of protection. Through a critical analysis of the traditional and contemporary US and European regulatory frameworks of protection for computer software inventions, this thesis demonstrates the confusion and legal uncertainty resulting from ill-defined patent laws and inconsistent patent practices as to the scope of the “patentable subject matter” requirement, further compounded by substantial flaws in the structural configuration of the decision-making procedures within which the patent systems operate. This damaging combination prevents the operation of an accessible and effective Intellectual Property (IP) legal framework of protection for computer software inventions, capable of securing adequate economic returns for inventors whilst preserving the necessary scope for innovation and competition in the field, to the ultimate benefit of society. In exploring the substantive and structural deficiencies in the European and US regulatory frameworks, this thesis develops to ultimately highlight that the best approach to the reform of the legal regulation of software patentability is two-tiered. It demonstrates that any reform to achieve international legal harmony first requires the legislature to individually clarify (Europe) or restate (US) the long-standing inadequate rules governing the scope of software “patentable subject matter”, together with the reorganisation of the unworkable structural configuration of the decision-making procedures. Informed by the critical analysis of the evolution of the “patentable subject matter” requirement for computer software in the US, this thesis particularly considers the potential of the reforms of the European patent system currently underway, to bring about certainty, predictability and uniformity in the legal treatment of computer software inventions.
Resumo:
A growing number of software development projects successfully exhibit a mix of agile and traditional software development methodologies. Many of these mixed methodologies are organization specific and tailored to a specific project. Our objective in this research-in-progress paper is to develop an artifact that can guide the development of such a mixed methodology. Using control theory, we design a process model that provides theoretical guidance to build a portfolio of controls that can support the development of a mixed methodology for software development. Controls, embedded in methods, provide a generalizable and adaptable framework for project managers to develop their mixed methodology specific to the demands of the project. A research methodology is proposed to test the model. Finally, future directions and contributions are discussed.