2 resultados para 11260658 M1

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary focus of this thesis was the development of a novel chiral tether that could be used to control axial chirality around a newly formed aryl-aryl bond, and the extension of this methodology to the model synthesis of gomisin M1. In chapter 1, a review detailing the use of chiral tethers in the synthesis of atropisomers is discussed. The use of a variety of chiral molecules including 1,2-diols, 1,3-diols and other diol-based tethers, as well as amine-based and miscellaneous tethers are detailed. In chapter 2, the rationale behind the design of our novel molecular tethers, along with the subsequent synthesis of three chiral 1,3-diol-based tethers, is outlined. The method by which the enantiopurity of these diols was determined is also reviewed. This chapter also includes the attempted Mitsunobu and intramolecular couplings in the model synthesis of BINOL. Chapter 3 discusses the synthesis of suitable aryl halide substrates, and their employment in the attempted tether-controlled asymmetric model synthesis of gomisin M1. A comprehensive investigation into the attempted intramolecular biaryl coupling of these tethered substrates is also included. The non-stereoselective model synthesis of gomisin M1 is outlined in chapter 4. The installation of the desired biaryl linkage and the subsequent attempted intramolecular McMurry couplings are discussed. The impact of different protecting groups in the molecule on the intramolecular McMurry reaction is also outlined. Chapter 5 details the full experimental procedures, including spectroscopic and analytical data for the compounds prepared during this research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite increased application of commensal bacteria for attempting to improve the symptoms of a variety of inflammatory conditions, including inflammatory bowel diseases, diarrhoea and irritable bowel syndrome, therapeutic approaches that involve live bacteria are hampered by a limited understanding of bacterium-host interactions. Lactobacilli are natural inhabitants of the mammalian gastrointestinal tract and many lactobacilli are regarded as probiotics meaning that they exert a beneficial influence on the health status of their consumers. Modulation of immune responses is a plausible mechanism underlying these beneficial effects. The aim of this thesis was to investigate the effect of 33 Lactobacillus salivarius strains on the production of inflammatory cytokines from a variety of human and mouse immune cells. Induction of immune responses in vitro was shown to be bacterial- and mouse strain-dependent, cell type-dependent, blood donor-dependent and bacterial cell number-dependent. Collectively, these data suggest the importance of a case-by-case selection of candidate strains for their potential therapeutic application. Toll-like receptors (TLRs) recognize microbe-associated molecular patterns (MAMPs) and play a critical role in shaping microbial-specific innate and adaptive immune responses. Following ligand engagement, TLRs trigger a complex network of signalling that culminate in the production of inflammatory mediators. The investigation of the molecular mechanisms underlying the Lb. salivarius-host interaction resulted in the identification of a novel role for TLR2 in negatively regulating TLR4 signalling originated from subcellular compartments within macrophages. Notably, sustained activation of JAK/STAT cascade and M1-signature genes in TLR2-/- macrophages was ablated by selective TLR4 and JAK inhibitors and by absence of TLR4 in TLR2/4-/- cells. In addition, other negative regulators of TLR signalling triggered by Lb. salivarius strains were found to be the adapter molecules TIRAP and TRIF. Understanding negative regulation of TLR signalling may pave the way for the development of novel therapeutics to limit inflammation in multiple diseases.