3 resultados para 111-504

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An examination of the selective etching mechanism of a 1-alkanethiol self-assembled monolayer (SAM) covered Au{111} surface using in-situ atomic force microscopy (AFM) and molecular resolution scanning tunnelling microscopy (STM) is presented. The monolayer self-assembles on a smooth Au{111} surface and typically contains nanoscale non-uniformities such as pinholes, domain boundaries and monatomic depressions. During etching in a ferri/ferrocyanide water-based etchant, selective and preferential etching occurs at SAM covered Au(111) terrace and step edges where a lower SAM packing density is observed, resulting in triangular islands being relieved. The triangular islands are commensurate with the Au(111) lattice with their long edges parallel to its [11-0] direction. Thus, SAM etching is selective and preferential attack is localized to defects and step edges at sites of high molecular density contrast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a mechanism for pore growth and propagation based on a three-step charge transfer model. The study is supported by electron microscopy analysis of highly doped n-InP samples anodised in aqueous KOH. The model and experimental data are used to explain propagation of pores of characteristic diameter preferentially along the <111>A directions. We also show evidence for deviation of pore growth from the <111>A directions and explain why such deviations should occur. The model is self-consistent and predicts how carrier concentration affects the internal dimensions of the porous structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of economical heterogeneous catalysts for the activation of methane is a major challenge for the chemical industry. Screening potential candidates becomes more feasible using rational catalyst design to understand the activity of potential catalysts for CH4 activation. The focus of the present paper is the use of density functional theory to examine and elucidate the properties of doped CeO2. We dope with Cu and Zn transition metals having variable oxidation state (Cu), and a single oxidation state (Zn), and study the activation of methane. Zn is a divalent dopant and Cu can have a +1 or +2 oxidation state. Both Cu and Zn dopants have an oxidation state of +2 after incorporation into the CeO2 (111) surface; however a Hubbard +U correction (+U = 7) on the Cu 3d states is required to maintain this oxidation state when the surface interacts with adsorbed species. Dissociation of methane is found to occur locally at the dopant cations, and is thermodynamically and kinetically more favorable on Zn-doped CeO2 than Cu-doped CeO2. The origins of this lie with the Zn(II) dopant moving towards a square pyramidal geometry in the sub surface layer which facilitates the formation of two-coordinated surface oxygen atoms, that are more beneficial for methane activation on a reducible oxide surface. These findings can aid in rational experimental catalyst design for further exploration in methane activation processes.