49 resultados para Food science
Resumo:
The use of unmalted oats or sorghum in brewing has great potential for creating new beer types/flavors and saving costs. However, the substitution of barley malt with oat or sorghum adjunct is not only innovative but also challenging due to their specific grain characteristics. The overall objectives of this Ph.D. project were: 1) to investigate the impact of various types and levels of oats or sorghum on the quality/processability of mashes, worts, and beers; 2) to provide solutions as regards the application of industrial enzymes to overcome potential brewing problems. For these purposes, a highly precise rheological method using a controlled stress rheometer was developed and successfully applied as a tool for optimizing enzyme additions and process parameters. Further, eight different oat cultivars were compared in terms of their suitability as brewing adjuncts and two very promising types identified. In another study, the limitations of barley malt enzymes and the benefits of the application of industrial enzymes in high-gravity brewing with oats were determined. It is recommended to add enzymes to high-gravity mashes when substituting 30% or more barley malt with oats in order to prevent filtration and fermentation problems. Pilot-scale brewing trials using 1040% unmalted oats revealed that the sensory quality of oat beers improved with increasing adjunct level. In addition, commercially available oat and sorghum flours were implemented into brewing. The use of up to 70% oat flour and 50% sorghum flour, respectively, is not only technically feasible but also economically beneficial. In a further study on sorghum was demonstrated that the optimization of industrial mashing enzymes has great potential for reducing beer production costs. A comparison of the brewing performance of red Italian and white Nigerian sorghum clearly showed that European grown sorghum is suitable for brewing purposes; 40% red sorghum beers were even found to be very low in gluten.
Resumo:
Eczema prevalence rates among Irish infants are unreported, despite eczema being the most common inflammatory condition of infancy. Maternal and infant nutritional status including vitamin D and other fat-soluble vitamins as well as early infant feeding have been linked with eczema initiation and development. Therefore, early nutrition could be a potential modifiable risk factor. The objective of this thesis was to prospectively describe early infant feeding and complementary feeding practices, to evaluate infant vitamin D supplementation practice, to quantify cord serum 25-hydroxyvitamin D [25(OH)D] and propose reference intervals for vitamin D metabolites, to report eczema prevalence and explore the potential role of infant nutrition and eczema. These research needs were investigated through the Cork BASELINE (Babies After SCOPE: Evaluating the Longitudinal Impact with Neurological and Nutritional Endpoints) Birth Cohort Study (n 2137). This thesis was the first comprehensive report from the birth cohort, therefore it was important to describe the cohort sociodemographic profile. Although socio-demographic characteristics compared well with national data, there was an over-representation of educated mothers which may limit the generalizability of the results. From August 2008 through November 2011, comprehensive postnatal assessments were completed at day 2 and at 2, 6, 12 and 24 months. Breastfeeding rates were low, while complementary feeding practices were broadly compliant with national guidelines. The implementation of a national infant vitamin D supplementation policy had a major impact on supplementation practice. Low levels of serum 25(OH)D were universal among Irish neonates. Eczema is a complex and multifaceted disease, which is increasing globally. This was the first report of eczema prevalence data among Irish infants which compared with international reports. Given the high prevalence and considerable burden eczema has on the lives of sufferers, intensive research efforts to identify a cause and therapeutic strategies to prevent/reduce eczema was re-emphasized in this thesis.
Resumo:
The physicochemical and nutritional properties of two fruit by-products were initially studied. Apple pomace (AP) contained a high level of fibre and pectin. The isolated AP pectin had a high level of methylation which developed viscous pastes. Orange pomace also had high levels of fibre and pectin, and it was an abundant source of minerals such as potassium and magnesium. Due to the fibrous properties of orange pomace flour, proofing and water addition were studied in a bread formulation. When added at levels greater than 6%, the loaf volume decreased. An optimised formulation and proofing time was derived using the optimisation tool; these consisted of 5.5% orange pomace, 94.6% water inclusion and with 49 minutes proofing. These optimised parameters doubled the total dietary fibre content of the bread compared to the original control. Pasting results showed how orange pomace inclusions reduced the final viscosity of the batter, reducing the occurrence of starch gelatinisation. Rheological properties i.e. the storage modulus (G') and complex modulus (G*) increased in the orange pomace batter compared to the control batter. This demonstrates how the orange pomace as an ingredient improved the robustness of the formulation. Sensory panellists scored the orange pomace bread comparably to the control bread. Milled apple pomace was studied as a potential novel ingredient in an extruded snack. Parameters studied included apple pomace addition, die head temperature and screw speed. As screw speed increased the favourable extrudate characteristics such as radical expansion ratio, porosity and specific volume decreased. The inclusion of apple pomace had a negative effect on extrudate characteristics at levels greater than 8% addition. Including apple pomace reduced the hardness and increased the crispiness of the snack. The optimised and validated formulation and extrusion process contained the following parameters: 7.7% apple pomace, 150C die head temperature and a screw speed of 69 rpm.
Resumo:
Antifungal compounds produced by Lactic acid bacteria (LAB) metabolites can be natural and reliable alternative for reducing fungal infections pre- and post-harvest with a multitude of additional advantages for cereal-base products. Toxigenic and spoilage fungi are responsible for numerous diseases and economic losses. This thesis includes an overview of the impact fungi have on aspects of the cereal food chain. The applicability of LAB in plant protection and cereal industry is discussed in detail. Specific case studies include Fusarium head blight, and the impact of fungi in the malting and baking industry. The impact of Fusarium culmorum infected raw barley on the final malt quality was part of the investigation. In vitro infected barley grains were fully characterized. The study showed that the germinative energy of infected barley grains decreased by 45% and grains accumulated 199 g.kg-1 of deoxynivalenol (DON). Barley grains were subsequently malted and fully characterized. Fungal biomass increased during all stages of malting. Infected malt accumulated 8-times its DON concentration during malting. Infected malt grains revealed extreme structural changes due to proteolytic, (hemi)-cellulolytic and starch degrading activity of the fungi, this led to increased friability and fragmentation. Infected grains also had higher protease and -glucanase activities, lower amylase activity, a greater proportion of free amino and soluble nitrogen, and a lower -glucan content. Malt loss was over 27% higher in infected malt when compared to the control. The protein compositional changes and respective enzymatic activity of infected barley and respective malt were characterized using a wide range of methods. F. culmorum infected barley grains showed an increase in proteolytic activity and protein extractability. Several metabolic proteins decreased and increased at different rates during infection and malting, showing a complex F. culmorum infection interdependence. In vitro F. culmorum infected malt was used to produce lager beer to investigate changes caused by the fungi during the brewing processes and their effect on beer quality attributes. It was found, that the wort containing infected malt had a lower pH, a higher FAN, higher -glucan and a 45% increase in the purging rate, and led to premature yeast flocculation. The beer produced with infected malt (IB) had also a significantly different amino acid profile. IB flavour characterization revealed a higher concentration of esters, fusel alcohols, fatty acids, ketones, and dimethylsulfide, and in particular, acetaldehyde, when compared to the control. IB had a greater proportion of Strecker aldehydes and Maillard products contributing to an increased beer staling character. IB resulted in a 67% darker colour with a trend to better foam stability. It was also found that 78% of the accumulated mycotoxin deoxynivalenol in the malt was transferred into beer. A LAB cell-freesupernatant (cfs), produced in wort-base substrate, was investigated for its ability to inhibit Fusarium growth during malting. Wort was a suitable substrate for LAB exhibiting antifungal activity. Lactobacillus amylovorus DSM19280 inhibited 104 spores.mL-1 for 7 days, after 120 h of fermentation, while Lactobacillus reuteri R29 inhibited 105 spores.mL-1 for 7 days, after 48 h of fermentation. Both LAB cfs had significant different organic acid profiles. Acid-base antifungal compounds were identified and, phenyllactic, hydroxy-phenyllactic, and benzoic acids were present in higher concentrations when compared to the control. A 3 P wort substrate inoculated With L. reuteri R29 (cfs) was applied in malting and successfully inhibited Fusarium growth by 23%, and mycotoxin DON by 80%. Malt attributes resulted in highly modified grains, lower pH, higher colouration, and higher extract yield. The implementation of selected LAB producing antifungal compounds can be used successfully in the malting process to reduce mould growth and mycotoxin production.
Resumo:
The goal of neonatal nutrition in the preterm infant is to achieve postnatal growth and body composition approximating that of a normal fetus of the same postmenstrual age and to obtain a functional outcome comparable to infants born at term. However, in clinical practice such a pattern is seldom achieved, with growth failure and altered body composition being extensively reported. The BabyGrow preterm nutrition study was a longitudinal, prospective, observational study designed to investigate nutrition and growth in 59 preterm infants following the implementation of evidence-based nutrition guidelines in the neonatal unit at Cork University Maternity Hospital. Nutrient delivery was precisely measured during the entire hospital stay and intakes were compared with current international recommendations. Barriers to nutrient delivery were identified across the phases of nutritional support i.e. exclusive parenteral nutrition and transition (establishment of enteral feeds) phases of nutrition and nutritional strategies to optimise nutrient delivery were proposed according to these phases. Growth was measured from birth up to 2 months corrected age and body composition was assessed in terms of fat mass and lean body mass by air displacement plethysmography (PEA POD) at 34 weeks gestation, term corrected age and 2 months corrected age. Anthropometric and body composition data in the preterm cohort were compared with a term reference group from the Cork BASELINE Birth Cohort Study (n=1070) at similar time intervals. The clinical and nutritional determinants of growth and body composition during the neonatal period were reported for the first time. These data have international relevance, informing authoritative agencies developing evidence-based practice guidelines for neonatal nutritional support. In the future, the nutritional management of preterm infants may need to be individualised to consider gestational age, birth weight as well as preterm morbidity.
Resumo:
A digital differentiator simply involves the derivation of an input signal. This work includes the presentation of first-degree and second-degree differentiators, which are designed as both infinite-impulse-response (IIR) filters and finite-impulse-response (FIR) filters. The proposed differentiators have low-pass magnitude response characteristics, thereby rejecting noise frequencies higher than the cut-off frequency. Both steady-state frequency-domain characteristics and Time-domain analyses are given for the proposed differentiators. It is shown that the proposed differentiators perform well when compared to previously proposed filters. When considering the time-domain characteristics of the differentiators, the processing of quantized signals proved especially enlightening, in terms of the filtering effects of the proposed differentiators. The coefficients of the proposed differentiators are obtained using an optimization algorithm, while the optimization objectives include magnitude and phase response. The low-pass characteristic of the proposed differentiators is achieved by minimizing the filter variance. The low-pass differentiators designed show the steep roll-off, as well as having highly accurate magnitude response in the pass-band. While having a history of over three hundred years, the design of fractional differentiator has become a hot topic in recent decades. One challenging problem in this area is that there are many different definitions to describe the fractional model, such as the Riemann-Liouville and Caputo definitions. Through use of a feedback structure, based on the Riemann-Liouville definition. It is shown that the performance of the fractional differentiator can be improved in both the frequency-domain and time-domain. Two applications based on the proposed differentiators are described in the thesis. Specifically, the first of these involves the application of second degree differentiators in the estimation of the frequency components of a power system. The second example concerns for an image processing, edge detection application.
Resumo:
In recent years, extensive research has been carried out on the health benefits of milk proteins and peptides. Biologically active peptides are defined as specific protein fragments which have a positive impact on the physiological functions of the body; such peptides are produced naturally in vivo, but can also be generated by physical and/or chemical processes, enzymatic hydrolysis and/or microbial fermentation. The aims of this thesis were to investigate not only the traditional methods used for the generation of bioactive peptides, but also novel processes such as heat treatment, and the role of indigenous milk proteases, e.g., in mastitic milk, in the production of such peptides. In addition, colostrum was characterised as a source of bioactive proteins and peptides. Firstly, a comprehensive study was carried out on the composition and physical properties of colostrum throughout the early-lactation period. Marked differences in the physico-chemical properties of colostrum compared with milk were observed. Various fractions of colostrum were also tested for their effect on the secretion of pro- and anti-inflammatory cytokines from a macrophage cell line and bone marrow dendritic cells, as well as insulin secretion from a pancreatic beta cell line. A significant reduction in the secretion of the pro-inflammatory cytokines, TNF-, IL-6, IL-1 and IL-12, a significant increase in the secretion of the anti-inflammatory cytokine, IL-10, as well as a significant increase in insulin secretion were observed for various colostrum fractions. Another study examined the early proteomic changes in the milk of 8 cows in response to infusion with the endotoxin lipopolysaccharide (LPS) at quarter level in a model mastitic system; marked differences in the protein and peptide profile of milk from LPS challenged cows were observed, and a pH 4.6-soluble fraction of this milk was found to cause a substantial induction in the secretion of IL-10 from a murine macrophage cell line. Heat-induced hydrolysis of sodium caseinate was investigated from the dual viewpoints of protein breakdown and peptide formation, and, a peptide fraction produced in this manner was found to cause a significant increase in the secretion of the anti-inflammatory cytokine, IL-10, from a murine macrophage cell line. The effects of sodium caseinate hydrolysed by chymosin on the gut-derived satiety hormone glucagon-like peptide-1 (GLP-1) were investigated; the resulting casein-derived peptides displayed good in vitro and in vivo secretion of GLP-1. Overall, the studies described in this thesis expand on current knowledge and provide good evidence for the use of novel methods for the isolation, generation and characterisation of bioactive proteins and/or peptides.
Resumo:
Defects in commercial cheese result in a downgrading of the final cheese and a consequential economic loss to the cheese producer. Developments of defects in cheese are often not fully understood and therefore not controllable by the producer. This research investigated the underlying factors in the development of split and secondary fermentation defect and of pinking defects in commercial Irish cheeses. Split defect in Swiss-type cheese is a common defect associated with eye formation and manifests as slits and cracks visible in the cut cheese loaf (Reinbold, 1972; Daly et al., 2010). No consensus exists as to the definitive causes of the defect and possible factors which may contribute to the defect were reviewed. Models were derived to describe the relationship between moisture, pH, and salt levels and the distance from sample location to the closest external block surface during cheese ripening. Significant gradients within the cheese blocks were observed for all measured parameters in cheeses at 7 day post/after manufacture. No significant pH gradient was found within the blocks on exit from hot-room ripening and at three months post exit from the hot-room. Moisture content reached equilibrium within the blocks between exit from hot-room and 3 months after exit from hot-room while salt and salt-to-moisture levels had not reached equilibrium within the cheese blocks even at three months after exit from hot-room ripening. A characterisation of Swiss-type cheeses produced from a seasonal milk supply was undertaken. Cheeses were sampled on two days per month of the production year, at three different times during the manufacturing day, at internal and external regions of the cheese block and at four ripening time points (7 days post manufacture, post hot-room, 14 days post hot-room and 3 months in a cold room after exit from hot-room). Compositional, biochemical and microbial indices were determined, and the results were analysed as a splitplot with a factorial arrangement of treatments (season, time of day, area) on the main plot and ripening time on the sub-plot. Season (and interactions) had a significant effect on pH and salt-in-moisture levels (SM), mean viable counts of L. helveticus, propionic acid and non-starter lactic acid bacteria, levels of primary and secondary proteolysis and cheese firmness. Levels of proteolysis increased significantly during hot-room ripening but also during cold room storage, signifying continued development of cheese ripening during cold storage (> 8C). Rheological parameters (e.g. springiness and cohesiveness) were significantly affected by interactions between ripening and location within cheese blocks. Time of day of manufacture significantly affected mean cheese calcium levels at 7 days post manufacture and mean levels of arginine and mean viable counts of NSLAB. Cheeses produced during the middle of the production day had the best grading scores and were more consistent compared to cheeses produced early or late during day of manufacture. Cheeses with low levels of S/M and low values of resilience were associated with poor grades at 7 days post manufacture. Chesses which had high elastic index values and low values of springiness in the external areas after exit from hot-room ripening also obtained good commercial grades. Development of a pink colour defect is an intermittent defect in ripened cheese which may or may not contain an added colourant, e.g., annatto. Factors associated with the defect were reviewed. Attempts at extraction and identification of the pink discolouration were unsuccessful. The pink colour partitioned with the water insoluble protein fraction. No significant difference was observed between ripened control and defect cheese for oxygen levels and redox potential or for the results of elemental analysis. A possible relationship between starter activity and defect development was established in cheeses with added coulourant, as lower levels of residual galactose and lactose were observed in defective cheese compared to control cheese free of the defect. Swiss-type cheese without added colourant had significantly higher levels of arginine and significantly lower lactate levels. Flow cell cytometry indicated that levels of bacterial cell viability and metabolic state differed between control and defect cheeses (without added colourant). Pyrosequencing analysis of cheese samples with and without the defect detected the previously unreported bacteria in cheese, Deinococcus thermus (a potential carotenoid producer). Defective Swiss-type cheeses had elevated levels of Deinococcus thermus compared to control cheeses, however the direct cause of pink was not linked to this bacterium alone. Overall, research was undertaken on underlying factors associated with the development of specific defects in commercial cheese, but also characterised the dynamic changes in key microbial and physicochemical parameters during cheese ripening and storage. This will enable the development of processing technologies to enable seasonal manipulation of manufacture protocols to minimise compositional and biochemical variability and to reduce and inhibit the occurrence of specific quality defects.
Resumo:
The aim of this thesis was to identify selected potential probiotic characteristics of Bifidobacterium longum strains isolated from human sources, and to examine these characteristics in detail using genomic and phenotypic techniques. One strain in particular Bifidobacterium longum DPC 6315 was the main focus of the thesis and this strain was used in both the manufacture of yoghurt and an animal study. In total, 38 B. longum strains, obtained from infants and adults, were assessed in vitro for the selected probiotic traits using a combined phenotypic and molecular approach. Differentiation of the 38 strains using amplified ribosomal DNA restriction analysis (ARDRA) into subspecies indicated that of the 38 bifidobacterial strains tested, 34 were designated B. longum subsp. longum and four B. longum subsp. infantis.
Resumo:
The physicochemical properties of cheese and milk gels are greatly influenced by molecular interactions between the casein proteins involving calcium. Novel experiments were designed to investigate the relationship between insoluble caseinbound cations and rheological properties of Cheddar cheese and rennet-induced milk gels. Cheddar cheese and rennet-induced milk gels were supplemented with Mg2+ or Sr2+ to compare their effects on their rheological properties to those previously reported in literature for Ca2+ supplementation. Sr2+ displayed behaviour similar to Ca2+ as observed by its ability to increase the rigidity of cheese and rennet milk gels and also decrease cheese meltability. Mg+2 had no influence on cheese rheological properties and was greatly inferior to Ca2+ and Sr2+ in its ability to increase rennet milk gel elasticity. Cheddar cheese was supplemented with the calcium-chelating salts trisodium citrate, disodium hydrogen phosphate or disodium EDTA, in an attempt to reduce the CCP content of cheese and thereby modify its rheological and functional properties. TSC and EDTA were successful in decreasing cheese CCP, whereas DSP caused an initial increase in CCP content. Cheddar cheese was supplemented with chlorides of iron, copper and zinc at salting to investigate the effects of concentrations of these elements in excess of those found innately or commonly in fortification studies, with emphasis on mineral equilibria changes and resultant alteration of rheological properties. Zinc addition was the only added metal that significantly influenced cheese rheological properties, leading to an increase in cheese rigidity and decreased cheese melt at elevated temperatures. Gum tragacanth was used as a fat-replacer in the manufacture of reduced-fat Cheddar cheese, in an attempt to improve the rheological, functional and sensory properties of reduced-fat Cheddar. Overall, the experimental work reported in this thesis generated new knowledge and theories about how casein-mineral interactions influence rheological properties of casein systems.
Resumo:
Potatoes (Solanum Tuberosum L.) contain secondary metabolites that may have an impact on human health. The aim of this study was to assess the levels of some of these compounds in a wide range of varieties, including rare, heritage and commercial cultivars. Vitamin C, total carotenoids, phenolics, flavonoids, antioxidant activity and glycoalkaloids were determined, using spectroscopy and chromatography, in the skin and flesh of tubers grown in field trials. Transcript levels of key synthetic enzymes were assessed by qPCR. Accumulation of selected metabolites was higher in the skin than in the flesh of tubers, except ascorbate, which was undetected in the skin. Differences were on average 2.5 to 3-fold for carotenoids, 6-fold for phenolics, 15 to 16-fold for flavonoids, 21-fold for glycoalkaloids and 9 to 10-fold for antioxidant activity. Higher contents of carotenoids were associated with yellow skin or flesh, and higher values of phenolics, flavonoids and antioxidant activity with blue flesh. Variety Burren had maxima values of carotenoids in skin and flesh, variety Nicola of ascorbate, variety Congo of phenolics, flavonoids and antioxidant activity in both tissues, except antioxidant activity in the skin, which was higher in Edzell Blue. Varieties May Queen and International Kidney had highest glycoalkaloid content in skin and flesh respectively. The effect of the environment was diverse: year of cultivation was significant for all metabolites, but site of cultivation was not for carotenoids and glycoalkaloids. Levels of expression of phenylalanine ammonia-lyase and chalcone synthase were higher in varieties accumulating high contents of phenolic compounds. However, levels of expression of phytoene synthase and L-galactono-1,4-lactone dehydrogenase were not different between varieties showing contrasting levels of carotenoids and ascorbate respectively. This work will help identify varieties that could be marketed as healthier and the most suitable varieties for extraction of high-value metabolites such as glycoalkaloids.
Resumo:
Urban areas in many developing countries are expanding rapidly by incorporating nearby subsistence farming communities. This has a direct effect on the consumption and production behaviours of the farm households but empirical evidence is sparse. This thesis investigated the effects of rapid urbanization and the associated policies on welfare of subsistence farm households in peri-urban areas using a panel dataset from Tigray, Ethiopia. The study revealed a number of important issues emerging with the rapid urban expansion. Firstly, private asset holdings and consumption expenditure of farm households, that have been incorporated into urban administration, has decreased. Secondly, factors that influence the farm households welfare and vulnerability depend on the administration they belong to, urban or rural. Gender and literacy of the household head have significant roles for the urban farm households to fall back into and/or move out of poverty. However, livestock holding and share of farm income are the most important factors for rural households. Thirdly, the study discloses that farming continues to be important source of income and income diversification is the principal strategy. Participation in nonfarm employment is less for farm households in urban than rural areas. Adult labour, size of the local market and past experience in the nonfarm sector improves the likelihood of engaging in skilled nonfarm employment opportunities. But money, given as compensation for the land taken away, is not crucial for the household to engage in better paying nonfarm employments. Production behaviour of the better-off farm households is the same, regardless of the administration they belong to. However, the urban poor participate less in nonfarm employment compared to the rural poor. These findings signify the gradual development of urban-induced poverty in peri-urban areas. In the case of labour poor households, introducing urban safety net programmes could improve asset productivity and provide further protection.
Resumo:
Consumer demand is revolutionizing the way products are being produced, distributed and marketed. In relation to the dairy sector in developing countries, aspects of milk quality are receiving more attention from both society and the government. However, milk quality management needs to be better addressed in dairy production systems to guarantee the access of stakeholders, mainly small-holders, into dairy markets. The present study is focused on an analysis of the interaction of the upstream part of the dairy supply chain (farmers and dairies) in the Mantaro Valley (Peruvian central Andes), in order to understand possible constraints both stakeholders face implementing milk quality controls and practices; and evaluate ex-ante how different strategies suggested to improve milk quality could affect farmers and processors profits. The analysis is based on three complementary field studies conducted between 2012 and 2013. Our work has shown that the presence of a dual supply chain combining both formal and informal markets has a direct impact on dairy production at the technical and organizational levels, affecting small formal dairy processors possibilities to implement contracts, including agreements on milk quality standards. The analysis of milk quality management from farms to dairy plants highlighted the poor hygiene in the study area, even when average values of milk composition were usually high. Some husbandry practices evaluated at farm level demonstrated cost effectiveness and a big impact on hygienic quality; however, regular application of these practices was limited, since small-scale farmers do not receive a bonus for producing hygienic milk. On the basis of these two results, we co-designed with formal small-scale dairy processors a simulation tool to show prospective scenarios, in which they could select their best product portfolio but also design milk payment systems to reward farmers with high milk quality performances. This type of approach allowed dairy processors to realize the importance of including milk quality management in their collection and manufacturing processes, especially in a context of high competition for milk supply. We concluded that the improvement of milk quality in a smallholder farming context requires a more coordinated effort among stakeholders. Successful implementation of strategies will depend on the willingness of small-scale dairy processors to reward farmers producing high milk quality; but also on the support from the State to provide incentives to the stakeholders in the formal sector.
Infant milk formula manufacture: process and compositional interactions in high dry matter wet-mixes
Resumo:
Infant milk formula (IMF) is fortified milk with composition based on the nutrient content in human mother's milk, 0 to 6 months postpartum. Extensive medical and clinical research has led to advances in the nutritional quality of infant formula; however, relatively few studies have focused on interactions between nutrients and the manufacturing process. The objective of this research was to investigate the impact of composition and processing parameters on physical behaviour of high dry matter (DM) IMF systems with a view to designing more sustainable manufacturing processes. The study showed that commercial IMF, with similar compositions, manufactured by different processes, had markedly different physical properties in dehydrated or reconstituted state. Commercial products made with hydrolysed protein were more heat stable compared to products made with intact protein, however, emulsion quality was compromised. Heat-induced denaturation of whey proteins resulted in increased viscosity of wet-mixes, an effect that was dependant on both whey concentration and interactions with lactose and caseins. Expanding on fundamental laboratory studies, a novel high velocity steam injection process was developed whereby high DM (60%) wet-mixes with lower denaturation/viscosity compared to conventional processes could be achieved; powders produced using this process were of similar quality to those manufactured conventionally. Hydrolysed proteins were also shown to be an effective way of reducing viscosity in heat-treated high DM wet-mixes. In particular, using a whey protein concentrate whereby -Lactoglobulin was selectively hydrolysed, i.e., -Lactalbumin remained intact, reduced viscosity of wet-mixes during processing while still providing good emulsification. The thesis provides new insights into interactions between nutrients and/or processing which influence physical stability of IMF both in concentrated liquid and powdered form. The outcomes of the work have applications in such areas as; increasing the DM content of spray drier feeds in order to save energy, and, controlling final powder quality.
Resumo:
Malnutrition, sarcopenia and cancer cachexia (CC) are prevalent among cancer patients and can have detrimental effects on clinical outcomes such as quality of life (QoL) and overall survival. Cachexia is associated with lower tolerance for chemotherapy, which limits the total dose that can be delivered, the number of symptomatic responses and any survival advantage that might be accrued. Moreover, for the majority who do not respond, cachexia may be exacerbated by systemic chemotherapy, thus increasing the net symptom burden experienced by patients. The multitude of interactions between cancer location, treatments, nutritional status and QoL has never been thoroughly explored in an Irish cancer cohort. The objectives of this thesis were to further understand nutritional status, especially body composition in ambulatory cancer patients and determine the relationship between nutritional status using different assessment criteria and QoL, chemotherapy toxicity and survival among cancer patients undergoing chemotherapy. Results aimed to identify baseline factors that may be predictive of poor outcome, toxicities to chemotherapy and disease-free and overall survival. This thesis broadly divides into two sections. The first section (Chapters 3 & 4) focuses on improving our knowledge of the nutritional status of Irish cancer outpatients using a cross sectional study design. A study of 517 patients referred for chemotherapy was conducted using computed tomography (CT) imaging (body composition) and a survey that documented oncologic data, weight loss (WL) data and QoL data. We revealed that a significant proportion of Irish cancer patients undergoing chemotherapy experience unintentional WL over the previous 6 months (62%), sarcopenia (45%) and CC (43%), and the distribution of WL and nutritional risk were associated with site of primary tumour and treatment intent. Patients that had sarcopenia, nutritional risk, or CC had significantly reduced functional abilities, more symptoms and adverse global QoL. In the second section of this thesis (Chapters 5 & 6) the potential link between developing toxicity to antineoplastic regimens in patients with sarcopenia was conducted by way of retrospective studies. A retrospective serial CT analysis defined the prevalence of sarcopenia in patients with metastatic renal cell carcinoma (mRCC) and metastatic castrate resistant prostate cancer (mCRPC), which was then correlated with dose limiting toxicities of sunitinib and docetaxel respectively. Sarcopenia was prevalent in patients with mRCC and mCRPC, was an occult condition in patients with normal/high BMI, was associated with less treatment days, was a significant predictor of DLT in patients receiving sunitinib and a significant predictor of neutropenia and neurosensory toxicities in patients receiving docetaxel. This thesis attempted to address the underlying research deficiencies in Irish oncology nutritional data at national level. The findings from this thesis have implications for the planning of cancer care interventions and indicate that further research is required to improve nutritional screening, in particular for CC and sarcopenia, in the hope that timely intervention can improve both patient-centered and oncologic outcomes.