17 resultados para wave power


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The wave energy industry is entering a new phase of pre-commercial and commercial deployments of full-scale devices, so better understanding of seaway variability is critical to the successful operation of devices. The response of Wave Energy Converters to incident waves govern their operational performance and for many devices, this is highly dependent on spectral shape due to their resonant properties. Various methods of wave measurement are presented, along with analysis techniques and empirical models. Resource assessments, device performance predictions and monitoring of operational devices will often be based on summary statistics and assume a standard spectral shape such as Pierson-Moskowitz or JONSWAP. Furthermore, these are typically derived from the closest available wave data, frequently separated from the site on scales in the order of 1km. Therefore, variability of seaways from standard spectral shapes and spatial inconsistency between the measurement point and the device site will cause inaccuracies in the performance assessment. This thesis categorises time and frequency domain analysis techniques that can be used to identify changes in a sea state from record to record. Device specific issues such as dimensional scaling of sea states and power output are discussed along with potential differences that arise in estimated and actual output power of a WEC due to spectral shape variation. This is investigated using measured data from various phases of device development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper presents an investigation of fix-referenced and self-referenced wave energy converters and a comparison of their corresponding wave energy conversion capacities from real seas. For conducting the comparisons, two popular wave energy converters, point absorber and oscillating water column, and their power conversion capacities in the fixed-referenced and self-referenced forms have been numerically studied and compared. In the numerical models, the deviceâ s power extractions from seas are maximized using the correspondingly optimized power take-offs in different sea states, thus their power conversion capacities can be calculated and compared. From the comparisons and analyses, it is shown that the energy conversion capacities of the self-referenced devices can be significantly increased if the motions of the device itself can be utilized for wave energy conversion; and the self-referenced devices can be possibly designed to be compliant in long waves, which could be a very beneficial factor for device survivability in the extreme wave conditions (normally long waves). In this regards, the self-referenced WECs (wave energy converters) may be better options in terms of wave energy conversion from the targeted waves in seas (frequently the most occurred), and in terms of the device survivability, especially in the extreme waves when compared to the fix-referenced counterparts.