18 resultados para Operating cost


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work presented in this thesis described the development of low-cost sensing and separation devices with electrochemical detections for health applications. This research employs macro, micro and nano technology. The first sensing device developed was a tonerbased micro-device. The initial development of microfluidic devices was based on glass or quartz devices that are often expensive to fabricate; however, the introduction of new types of materials, such as plastics, offered a new way for fast prototyping and the development of disposable devices. One such microfluidic device is based on the lamination of laser-printed polyester films using a computer, printer and laminator. The resulting toner-based microchips demonstrated a potential viability for chemical assays, coupled with several detection methods, particularly Chip-Electrophoresis-Chemiluminescence (CE-CL) detection which has never been reported in the literature. Following on from the toner-based microchip, a three-electrode micro-configuration was developed on acetate substrate. This is the first time that a micro-electrode configuration made from gold; silver and platinum have been fabricated onto acetate by means of patterning and deposition techniques using the central fabrication facilities in Tyndall National Institute. These electrodes have been designed to facilitate the integration of a 3- electrode configuration as part of the fabrication process. Since the electrodes are on acetate the dicing step can automatically be eliminated. The stability of these sensors has been investigated using electrochemical techniques with excellent outcomes. Following on from the generalised testing of the electrodes these sensors were then coupled with capillary electrophoresis. The final sensing devices were on a macro scale and involved the modifications of screenprinted electrodes. Screen-printed electrodes (SPE) are generally seen to be far less sensitive than the more expensive electrodes including the gold, boron-doped diamond and glassy carbon electrodes. To enhance the sensitivity of these electrodes they were treated with metal nano-particles, gold and palladium. Following on from this, another modification was introduced. The carbonaceous material carbon monolith was drop-cast onto the SPE and then the metal nano-particles were electrodeposited onto the monolith material

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis explores the use of electromagnetics for both steering and tracking of medical instruments in minimally invasive surgeries. The end application is virtual navigation of the lung for biopsy of early stage cancer nodules. Navigation to the peripheral regions of the lung is difficult due to physical dimensions of the bronchi and current methods have low successes rates for accurate diagnosis. Firstly, the potential use of DC magnetic fields for the actuation of catheter devices with permanently magnetised distal attachments is investigated. Catheter models formed from various materials and magnetic tip formations are used to examine the usefulness of relatively low power and compact electromagnets. The force and torque that can be exerted on a small permanent magnet is shown to be extremely limited. Hence, after this initial investigation we turn our attention to electromagnetic tracking, in the development of a novel, low-cost implementation of a GPS-like system for navigating within a patient. A planar magnetic transmitter, formed on a printed circuit board for a low-profile and low cost manufacture, is used to generate a low frequency magnetic field distribution which is detected by a small induction coil sensor. The field transmitter is controlled by a novel closed-loop system that ensures a highly stable magnetic field with reduced interference from one transmitter coil to another. Efficient demodulation schemes are presented which utilise synchronous detection of each magnetic field component experienced by the sensor. The overall tracking accuracy of the system is shown to be less than 2 mm with an orientation error less than 1°. A novel demodulation implementation using a unique undersampling approach allows the use of reduced sample rates to sample the signals of interest without loss of tracking accuracy. This is advantageous for embedded microcontroller implementations of EM tracking systems. The EM tracking system is demonstrated in the pre-clinical environment of a breathing lung phantom. The airways of the phantom are successfully navigated using the system in combination with a 3D computer model rendered from CT data. Registration is achieved using both a landmark rigid registration method and a hybrid fiducial-free approach. The design of a planar magnetic shield structure for blocking the effects of metallic distortion from below the transmitter is presented which successfully blocks the impact of large ferromagnetic objects such as operating tables. A variety of shielding material are analysed with MuMetal and ferrite both providing excellent shieling performance and an increased signal to noise ratio. Finally, the effect of conductive materials and human tissue on magnetic field measurements is presented. Error due to induced eddy currents and capacitive coupling is shown to severely affect EM tracking accuracy at higher frequencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research investigates whether a reconfiguration of maternity services, which collocates consultant- and midwifery-led care, reflects demand and value for money in Ireland. Qualitative and quantitative research is undertaken to investigate demand and an economic evaluation is performed to evaluate the costs and benefits of the different models of care. Qualitative research is undertaken to identify women’s motivations when choosing place of delivery. These data are further used to inform two stated preference techniques: a discrete choice experiment (DCE) and contingent valuation method (CVM). These are employed to identify women’s strengths of preferences for different features of care (DCE) and estimate women’s willingness to pay for maternity care (CVM), which is used to inform a cost-benefit analysis (CBA) on consultant- and midwifery-led care. The qualitative research suggests women do not have a clear preference for consultant or midwifery-led care, but rather a hybrid model of care which closely resembles the Domiciliary Care In and Out of Hospital (DOMINO) scheme. Women’s primary concern during care is safety, meaning women would only utilise midwifery-led care when co-located with consultant-led care. The DCE also finds women’s preferred package of care closely mirrors the DOMINO scheme with 39% of women expected to utilise this service. Consultant- and midwifery-led care would then be utilised by 34% and 27% of women, respectively. The CVM supports this hierarchy of preferences where consultant-led care is consistently valued more than midwifery-led care – women are willing to pay €956.03 for consultant-led care and €808.33 for midwifery-led care. A package of care for a woman availing of consultant- and midwifery-led care is estimated to cost €1,102.72 and €682.49, respectively. The CBA suggests both models of care are cost-beneficial and should be pursued in Ireland. This reconfiguration of maternity services would maximise women’s utility, while fulfilling important objectives of key government policy.