20 resultados para Ocean wave energy converter


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel numerical model of a Bent Backwards Duct Buoy (BBDB) Oscillating Water Column (OWC) Wave Energy Converter was created based on existing isolated numerical models of the different energy conversion systems utilised by an OWC. The novel aspect of this numerical model is that it incorporates the interdependencies of the different power conversion systems rather than modelling each system individually. This was achieved by accounting for the dynamic aerodynamic damping caused by the changing turbine rotational velocity by recalculating the turbine damping for each simulation sample and applying it via a feedback loop. The accuracy of the model was validated using experimental data collected during the Components for Ocean Renewable Energy Systems (CORES) EU FP-7 project that was tested in Galway Bay, Ireland. During the verification process, it was discovered that the model could also be applied as a valuable tool when troubleshooting device performance. A new turbine was developed and added to a full scale model after being investigated using Computational Fluid Dynamics. The energy storage capacity of the impulse turbine was investigated by modelling the turbine with both high and low inertia and applying three turbine control theories to the turbine using the full scale model. A single Maximum Power Point Tracking algorithm was applied to the low-inertia turbine, while both a fixed and dynamic control algorithm was applied to the high-inertia turbine. These results suggest that the highinertia turbine could be used as a flywheel energy storage device that could help minimize output power variation despite the low operating speed of the impulse turbine. This research identified the importance of applying dynamic turbine damping to a BBDB OWC numerical model, revealed additional value of the model as a device troubleshooting tool, and found that an impulse turbine could be applied as an energy storage system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oscillating Water Column (OWC) is one type of promising wave energy devices due to its obvious advantage over many other wave energy converters: no moving component in sea water. Two types of OWCs (bottom-fixed and floating) have been widely investigated, and the bottom-fixed OWCs have been very successful in several practical applications. Recently, the proposal of massive wave energy production and the availability of wave energy have pushed OWC applications from near-shore to deeper water regions where floating OWCs are a better choice. For an OWC under sea waves, the air flow driving air turbine to generate electricity is a random process. In such a working condition, single design/operation point is nonexistent. To improve energy extraction, and to optimise the performance of the device, a system capable of controlling the air turbine rotation speed is desirable. To achieve that, this paper presents a short-term prediction of the random, process by an artificial neural network (ANN), which can provide near-future information for the control system. In this research, ANN is explored and tuned for a better prediction of the airflow (as well as the device motions for a wide application). It is found that, by carefully constructing ANN platform and optimizing the relevant parameters, ANN is capable of predicting the random process a few steps ahead of the real, time with a good accuracy. More importantly, the tuned ANN works for a large range of different types of random, process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wave measurement is of vital importance for assessing the wave power resources and for developing wave energy devices, especially for the wave energy production and the survivability of the wave energy device. Wave buoys are one of the most popular measuring technologies developed and used for long-term wave measurements. In order to figure out whether the wave characteristics can be recorded by using the wave buoys accurately, an experimental study was carried out on the performance of three wave buoy models, viz two WaveScan buoys and one ODAS buoy, in a wave tank using the European FP7 MARINET facilities. This paper presents the test results in both time and frequency domains and the comparison between the wave buoys and wave gauge measurements. The analysis results reveal that for both regular and irregular waves, the WaveScan buoys have better performances than the ODAS buoy in terms of accuracy and the WaveScan buoys measurements have a very good correlation with those from the wave gauges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although aspects of power generation of many offshore renewable devices are well understood, their dynamic responses under high wind and wave conditions are still to be investigated to a great detail. Output only statistical markers are important for these offshore devices, since access to the device is limited and information about the exposure conditions and the true behaviour of the devices are generally partial, limited, and vague or even absent. The markers can summarise and characterise the behaviour of these devices from their dynamic response available as time series data. The behaviour may be linear or nonlinear and consequently a marker that can track the changes in structural situations can be quite important. These markers can then be helpful in assessing the current condition of the structure and can indicate possible intervention, monitoring or assessment. This paper considers a Delay Vector Variance based marker for changes in a tension leg platform tested in an ocean wave basin for structural changes brought about by single column dampers. The approach is based on dynamic outputs of the device alone and is based on the estimation of the nonlinearity of the output signal. The advantages of the selected marker and its response with changing structural properties are discussed. The marker is observed to be important for monitoring the as- deployed structural condition and is sensitive to changes in such conditions. Influence of exposure conditions of wave loading is also discussed in this study based only on experimental data.