22 resultados para Distúrbio gastrointestinal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability to adapt to and respond to increases in external osmolarity is an important characteristic that enables bacteria to survive and proliferate in different environmental niches. When challenged with increased osmolarity, due to sodium chloride (NaCl) for example, bacteria elicit a phased response; firstly via uptake of potassium (K+), which is known as the primary response. This primary response is followed by the secondary response which is characterised by the synthesis or uptake of compatible solutes (osmoprotectants). The overall osmotic stress response is much broader however, involving many diverse cellular systems and processes. These ancillary mechanisms are arguably more interesting and give a more complete view of the osmotic stress response. The aim of this thesis was to identify novel genetic loci from the human gut microbiota that confer increased tolerance to osmotic stress using a functional metagenomic approach. Functional metagenomics is a powerful tool that enables the identification of novel genes from as yet uncultured bacteria from diverse environments through cloning, heterologous expression and phenotypic identification of a desired trait. Functional metagenomics does not rely on any previous sequence information to known genes and can therefore enable the discovery of completely novel genes and assign functions to new or known genes. Using a functional metagenomic approach, we have assigned a novel function to previously annotated genes; murB, mazG and galE, as well as a putative brp/blh family beta-carotene 15,15’-monooxygenase. Finally, we report the identification of a completely novel salt tolerance determinant with no current known homologues in the databases. Overall the genes identified originate from diverse taxonomic and phylogenetic groups commonly found in the human gastrointestinal (GI) tract, such as Collinsella and Eggerthella, Akkermansia and Bacteroides from the phyla Actinobacteria, Verrucomicrobia and Bacteroidetes, respectively. In addition, a number of the genes appear to have been acquired via lateral gene transfer and/or encoded on a prophage. To our knowledge, this thesis represents the first investigation to identify novel genes from the human gut microbiota involved in the bacterial osmotic stress response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite increased application of commensal bacteria for attempting to improve the symptoms of a variety of inflammatory conditions, including inflammatory bowel diseases, diarrhoea and irritable bowel syndrome, therapeutic approaches that involve live bacteria are hampered by a limited understanding of bacterium-host interactions. Lactobacilli are natural inhabitants of the mammalian gastrointestinal tract and many lactobacilli are regarded as probiotics meaning that they exert a beneficial influence on the health status of their consumers. Modulation of immune responses is a plausible mechanism underlying these beneficial effects. The aim of this thesis was to investigate the effect of 33 Lactobacillus salivarius strains on the production of inflammatory cytokines from a variety of human and mouse immune cells. Induction of immune responses in vitro was shown to be bacterial- and mouse strain-dependent, cell type-dependent, blood donor-dependent and bacterial cell number-dependent. Collectively, these data suggest the importance of a case-by-case selection of candidate strains for their potential therapeutic application. Toll-like receptors (TLRs) recognize microbe-associated molecular patterns (MAMPs) and play a critical role in shaping microbial-specific innate and adaptive immune responses. Following ligand engagement, TLRs trigger a complex network of signalling that culminate in the production of inflammatory mediators. The investigation of the molecular mechanisms underlying the Lb. salivarius-host interaction resulted in the identification of a novel role for TLR2 in negatively regulating TLR4 signalling originated from subcellular compartments within macrophages. Notably, sustained activation of JAK/STAT cascade and M1-signature genes in TLR2-/- macrophages was ablated by selective TLR4 and JAK inhibitors and by absence of TLR4 in TLR2/4-/- cells. In addition, other negative regulators of TLR signalling triggered by Lb. salivarius strains were found to be the adapter molecules TIRAP and TRIF. Understanding negative regulation of TLR signalling may pave the way for the development of novel therapeutics to limit inflammation in multiple diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Visceral pain is a debilitating symptom of irritable bowel syndrome (IBS), a disorder affecting up to 30% of adults. A better understanding of the mechanisms underlying visceral hypersensitivity may facilitate development of more targeted therapies, improving the quality of life of these individuals. The studies performed in this thesis were designed to investigate important factors of visceral pain, including early-life manipulations, genetic predisposition and sex hormones. Maternal separation (MS) consistently reproduces visceral hypersensitivity and altered anxiety-like behaviours in rats, symptoms associated with IBS. It has been found that 5-HT2B receptor antagonism blocks visceral pain but no difference in relative 5-HT2B receptor mRNA expression was found in hippocampus, amygdala and colon. The neuronal activation patterns of prefrontal cortex and amygdala of MS rats were then investigated. MS animals are characterised by differential activation of the prefrontal cortex (anterior cingulate cortex (ACC), infralibic cortex, prelimbic cortex) as well as the central nucleus of the amygdala (CeA). Genetic factors also contribute to pain syndromes such as IBS. We utilised the Wistar Kyoto (WKY) rat, a stress-sensitive strain, as an animal model of brain-gut axis dysfunction. WKY rats have a lower expression of the glutamate transporter EAAT2 and mGlu4 receptor in the ACC. Another early-life factor that can increase susceptibility to functional gastrointestinal symptoms later life is disruption of the gut microbiota, thus early-life antibiotic treatment was used to assess this effect. Antibiotic treatment induced visceral hypersensitivity in adulthood and may be related to observed reductions in spinal cord alpha-2A adrenoreceptor (adra2A) mRNA. Lastly, we investigated sex differences in visceral sensitivity. EAAT1 & 2 mRNA levels are lower in females, potentially increasing glutamatergic concentration at the symaptic level. Moreover, NR1 and NR2B subunits mRNA of NMDA receptor were increased in caudal ACC of females. These findings may account for sex differences in visceral sensitivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Duchenne Muscular Dystrophy (DMD) is a fatal multi-system neuromuscular disease caused by loss of dystrophin. The loss of dystrophin from membranes of contractile muscle cells and the dysregulation of the DAPC, induces chronic inflammation due to tissue necrosis and eventual replacement with collagen which weakens muscular force and strength. Dystrophin deficiency may cause under-diagnosed features of DMD include mood disorders such as depression and anxiety and dysfunction of the gastrointestinal tract. The first study in the thesis examined mood in the dystrophin-deficient mdx mouse model of DMD and examined the effects of the tri-cyclic antidepressant, amitriptyline on behaviours. Amitriptyline had anti-depressant and anxiolytic effects in the mdx mice possibly through effects on stress factors such as corticotrophin-releasing factor (CRF). This antidepressant also reduced skeletal muscle inflammation and caused a reduction in circulating interleukin (IL)-6 levels. In the second and third studies, we specifically blocked IL-6 signalling and used Urocortin 2, CRFR2 agonist to investigate their potential as therapeutic targets in mdx mice pathophysiology. Isometric and isotonic contractile properties of the diaphragm, were compared in mdx mice treated with anti IL-6 receptor antibodies (anti IL-6R) and/or Urocortin 2. Deficits in force production, work and power detected in mdx mice were improved with treatment. In study three I investigated contractile properties in gastrointestinal smooth muscle. As compared to wild type mice, mdx mice had slower faecal transit times, shorter colons with thickened muscle layers and increased contractile activity in response to recombinant IL-6. Blocking IL-6 signalling resulted in an increase in colon length, normalised faecal output times and a reduction in IL-6-evoked contractile activity. The findings from these studies indicate that for both diaphragm and gastrointestinal function in a dystrophin-deficient model, targeting of IL-6 and CRFR2 signalling has beneficial therapeutic effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using C57BL/6J mice fed whey protein isolate (WPI) enriched high fat (HFD) or low-fat diets (LFD), this study tested the hypothesis that WPI directly impacts on adiposity by influencing lipid metabolism. WPI suppressed HFD-induced body fat and increased lean mass at 8 weeks of dietary challenge despite elevated plasma triacylglycerol (TAG) levels, suggesting reduced TAG storage. WPI reduced HFD-associated hypothalamic leptin and insulin receptor (IR) mRNA expression, and prevented HFD-associated reductions in adipose tissue IR and glucose transporter 4 expression. These effects were largely absent at 21 weeks of HFD feeding, however WPI increased lean mass and cause a trend towards decreased fat mass, with notable increased Lactobacillus and decreased Clostridium gut bacterial species. Increasing the protein to carbohydrate ratio enhanced the above effects, and shifted the gut microbiota composition away from the HFD group. Seven weeks of WPI intake with a LFD decreased insulin signalling gene expression in the adipose tissue in association with an increased fat accumulation. WPI reduced intestinal weight and length, suggesting a potential functional relationship between WPI, gastro-intestinal morphology and insulin related signalling in the adipose. Extending the study to 15 weeks, did not affect adipose fat weight, but decreased energy intake, weight gain and intestinal length. The functionality of protein sensing lysophosphatidic acid receptor 5 (LPA5) in 3T3-L1 pre-adipocytes was assessed. Over-expression of the receptor in 3T3-L1 pre-adipocytes provided a growth advantage to the cells and suppressed cellular differentiation into mature fat cells. In conclusion, the data demonstrates WPI impacts on adiposity by influencing lipid metabolism in a temporal manner, resulting possibly due to changes in lean mass, hypothalamic and adipose gene expression, gut microbiota and gastrointestinal morphology. The data also showed LPA5 is a novel candidate in regulating of preadipocyte growth and differentiation, and may mediate dietary protein effects on adipose tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis was undertaken to investigate the relevance of two bacterial isoprenoid biosynthetic pathways (Mevalonate (MVAL) and 2-C-methyl-D-erythritol 4-phosphate (MEP)) for host-microbe interactions. We determined a significant reduction in microbial diversity in the murine gut microbiota (by next generation sequencing) following oral administration of a common anti-cholesterol drug Rosuvastatin (RSV) that targets mammalian and bacterial HMG-CoA reductase (HMG-R) for inhibition of MVAL formation. In tandem we identified significant hepatic and intestinal off-target alterations to the murine metabolome indicating alterations in inflammation, bile acid profiles and antimicrobial peptide synthesis with implications on community structure of the gastrointestinal microbiota in statin-treated animals. However we found no effect on local Short Chain Fatty Acid biosynthesis (metabolic health marker in our model). We demonstrated direct inhibition of bacterial growth in-vitro by RSV which correlated with reductions in bacterial MVAL formation. However this was only at high doses of RSV. Our observations demonstrate a significant RSV-associated impact on the gut microbiota prompting similar human analysis. Successful deletion of another MVAL pathway enzyme (HMG-CoA synthase (mvaS)) involved in Listeria monocytogenes EGDe isoprenoid biosynthesis determined that the enzyme is non-essential for normal growth and in-vivo pathogenesis of this pathogen. We highlight potential evidence for alternative means of synthesis of the HMG-CoA substrate that could render mvaS activity redundant under our test conditions. Finally, we showed by global gene expression analysis (Massive Analysis of cDNA Ends (MACE RNA-seq) a significant role for the penultimate MEP pathway metabolite (E)-4-hydroxy-3-methyl-2-but-2-enyl pyrophosphate (HMBPP) in significant up regulation of genes of immunity and antigen presentation in THP-1 cells at nanomolar levels. We infected THP-1 cells with wild type or HMBPP under/over-producing L. monoctyogenes EGDe mutants and determined subtle effects of HMBPP upon overall host responses to Listeria infection. Overall our findings provide greater insights regarding bacterial isoprenoid biosynthetic pathways for host-microbe/microbe-host dialogue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bifidobacteria are Gram positive, anaerobic, typically Y-shaped bacteria which are naturally found in the digestive tract of certain mammals, birds and insects. Bifidobacterium breve strains are numerically prevalent among the gut microbiota of many healthy breast-fed infants. The prototypical B. breve strain UCC2003 has previously been shown to utilise numerous carbohydrates of plant origin. Various aspects of host-derived carbohydrate metabolism occurring in this bacterium will be described in this thesis. Chapter II describes B. breve UCC2003 utilisation of sialic acid, a nine-carbon monosaccharide, which is found in human milk oligosaccharides (HMOs) and the mucin glycoprotein. B. breve UCC2003 was also shown to cross-feed on sialic acid released from 3’ sialyllactose, a prominent HMO, by the extracellular sialidase activity of Bifidobacterium bifidum PRL2010. Chapter III reports on the transcriptional regulation of sialic acid metabolism in B. breve UCC2003 by a transcriptional repressor encoded by the nanR gene. NanR belongs to the GntR-family of transcriptional regulators and represents the first bifidobacterial member of this family to be characterised. Chapter IV investigates B. breve UCC2003 utilisation of mucin. B. breve UCC2003 was shown to be incapable of degrading mucin; however when grown in co-culture with B. bifidum PRL2010 it exhibits enhanced growth and survival properties. A number of methods were used to investigate and identify the mucin components supporting this enhanced growth/viability phenotype. Chapter V describes the characterisation of two sulfatase-encoding gene clusters from B. breve UCC2003. The transcriptional regulation of both sulfatase-encoding gene clusters was also investigated. The work presented in this thesis represents new information on the metabolism of host-derived carbohydrates in bifidobacteria, thus increasing our understanding of how these gut commensals are able to colonise and persist in the gastrointestinal tract.