234 resultados para Science Foundation Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent years have witnessed a rapid growth in the demand for streaming video over the Internet and mobile networks, exposes challenges in coping with heterogeneous devices and varying network throughput. Adaptive schemes, such as scalable video coding, are an attractive solution but fare badly in the presence of packet losses. Techniques that use description-based streaming models, such as multiple description coding (MDC), are more suitable for lossy networks, and can mitigate the effects of packet loss by increasing the error resilience of the encoded stream, but with an increased transmission byte cost. In this paper, we present our adaptive scalable streaming technique adaptive layer distribution (ALD). ALD is a novel scalable media delivery technique that optimises the tradeoff between streaming bandwidth and error resiliency. ALD is based on the principle of layer distribution, in which the critical stream data are spread amongst all packets, thus lessening the impact on quality due to network losses. Additionally, ALD provides a parameterised mechanism for dynamic adaptation of the resiliency of the scalable video. The Subjective testing results illustrate that our techniques and models were able to provide levels of consistent high-quality viewing, with lower transmission cost, relative to MDC, irrespective of clip type. This highlights the benefits of selective packetisation in addition to intuitive encoding and transmission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bandwidth constriction and datagram loss are prominent issues that affect the perceived quality of streaming video over lossy networks, such as wireless. The use of layered video coding seems attractive as a means to alleviate these issues, but its adoption has been held back in large part by the inherent priority assigned to the critical lower layers and the consequences for quality that result from their loss. The proposed use of forward error correction (FEC) as a solution only further burdens the bandwidth availability and can negate the perceived benefits of increased stream quality. In this paper, we propose Adaptive Layer Distribution (ALD) as a novel scalable media delivery technique that optimises the tradeoff between the streaming bandwidth and error resiliency. ALD is based on the principle of layer distribution, in which the critical stream data is spread amongst all datagrams thus lessening the impact on quality due to network losses. Additionally, ALD provides a parameterised mechanism for dynamic adaptation of the scalable video, while providing increased resilience to the highest quality layers. Our experimental results show that ALD improves the perceived quality and also reduces the bandwidth demand by up to 36% in comparison to the well-known Multiple Description Coding (MDC) technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are finitely many GIT quotients of

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three-dimensional vanadium pentoxide (V2O5) material architectures in the form of inverse opals (IOs) were fabricated using a simple electrodeposition process into artificial opal templates on stainless steel foil using an aqueous solution of VOSO4.χH2O with added ethanol. The direct deposition of V2O5 IOs was compared with V2O5 planar electrodeposition and confirms a similar progressive nucleation and growth mechanism. An in-depth examination of the chemical and morphological nature of the IO material was performed using X-ray crystallography, X-ray photoelectron spectroscopy, Raman scattering and scanning/transmission electron microscopy. Electrodeposition is demonstrated to be a function of the interstitial void fraction of the artificial opal and ionic diffusivity that leads to high quality, phase pure V2O5 inverse opals is not adversely affected by diffusion pathway tortuosity. Methods to alleviate electrodeposited overlayer formation on the artificial opal templates for the fabrication of the porous 3D structures are also demonstrated. Such a 3D material is ideally suited as a cathode for lithium ion batteries, electrochromic devices, sensors and for applications requiring high surface area electrochemically active metal oxides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article describes feasible and improved ways towards enhanced nanowire growth kinetics by reducing the equilibrium solute concentration in the liquid collector phase in a vapor-liquid-solid (VLS) like growth model. Use of bi-metallic alloy seeds (AuxAg1-x) influences the germanium supersaturation for a faster nucleation and growth kinetics. Nanowire growth with ternary eutectic alloys shows Gibbs-Thompson effect with diameter dependent growth rate. In-situ transmission electron microscopy (TEM) annealing experiments directly confirms the role of equilibrium concentration in nanowire growth kinetics and was used to correlate the equilibrium content of metastable alloys with the growth kinetics of Ge nanowires. The shape and geometry of the heterogeneous interfaces between the liquid eutectic and solid Ge nanowires were found to vary as a function of nanowire diameter and eutectic alloy composition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photonic crystals (PhCs) influence the propagation of light by their periodic variation in dielectric contrast or refractive index. This review outlines the attractive optical qualities inherent to most PhCs namely the presence of full or partial photonic band gaps and the possibilities they present towards the inhibition of spontaneous emission and the localization of light. Colloidal self-assembly of polymer or silica spheres is one of the most favoured and low cost methods for the formation of PhCs as artificial opals. The state of the art in growth methods currently used for colloidal self-assembly are discussed and the use of these structures for the formation of inverse opal architectures is then presented. Inverse opal structures with their porous and interconnected architecture span several technological arenas - optics and optoelectronics, energy storage, communications, sensor and biological applications. This review presents several of these applications and an accessible overview of the physics of photonic crystal optics that may be useful for opal and inverse opal researchers in general, with a particular emphasis on the recent use of these three-dimensional porous structures in electrochemical energy storage technology. Progress towards all-optical integrated circuits may lie with the concepts of the photonic crystal, but the unique optical and structural properties of these materials and the convergence of PhC and energy storage disciplines may facilitate further developments and non-destructive optical analysis capabilities for (electro)chemical processes that occur within a wide variety of materials in energy storage research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sinapic acid (SA) is a nutraceutical with known anti-oxidant, anti-microbial, anti-inflammatory, anti-cancer, and anti-anxiety properties. Novel co-crystals of SA were prepared with co-formers belonging to the category of GRAS [isonicotinic acid (INC), nicotinamide (NIA)], non-GRAS [4-pyridinecarbonitrile (PYC)], and active pharmaceutical ingredients (APIs) [6-propyl-2-thiouracil (PTU)] list of compounds. Structural study based on the X-ray crystal structures revealed the intermolecular hydrogen-bonded interactions and molecular packing. The crystal structure of sinapic acid shows the anticipated acid-acid homodimer along with discrete hydrogen bonds between the acid carbonyl and the phenolic moiety. The robust acid-acid homodimer appears to be very stable and is retained in the structures of two co-crystals (SA[middle dot]NIA and SA[middle dot]PYC). In these cases, co-crystallization occurs via intermolecular phenol O-H[three dots, centered]Naromatic hydrogen bonds between the co-formers. In the SA[middle dot]PTU[middle dot]2MeCN co-crystal the acid-acid homodimer gives way to the anticipated acid-amide heterodimer, with the phenolic moiety of SA hydrogen-bonded to acetonitrile. Attempts at obtaining the desolvated co-crystal led to lattice breakdown, thus highlighting the importance of acetonitrile in the formation of the co-crystal. Among the co-crystals examined, SA[middle dot]INC (5 weeks), SA[middle dot]NIA (8 weeks) and SA[middle dot]PYC (5 weeks) were found to be stable under accelerated humidity conditions (40 [degree]C, 75% RH), whereas SA[middle dot]PTU[middle dot]2MeCN decomposed after one week into individual components due to solvent loss.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Incorporation of thymidine analogues in replicating DNA, coupled with antibody and fluorophore staining, allows analysis of cell proliferation, but is currently limited to monolayer cultures, fixed cells and end-point assays. We describe a simple microscopy imaging method for live real-time analysis of cell proliferation, S phase progression over several division cycles, effects of anti-proliferative drugs and other applications. It is based on the prominent (~ 1.7-fold) quenching of fluorescence lifetime of a common cell-permeable nuclear stain, Hoechst 33342 upon the incorporation of 5-bromo-2’-deoxyuridine (BrdU) in genomic DNA and detection by fluorescence lifetime imaging microscopy (FLIM). We show that quantitative and accurate FLIM technique allows high-content, multi-parametric dynamic analyses, far superior to the intensity-based imaging. We demonstrate its uses with monolayer cell cultures, complex 3D tissue models of tumor cell spheroids and intestinal organoids, and in physiological study with metformin treatment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cystinosis is a multi-system autosomal recessive disorder caused by mutations and/or deletions in both alleles of CTNS, a gene encoding for the low pH dependent lysosomal cystine exporter cystinosin. Cystinosis occurs in approximately 1:200,000 newborns worldwide and is characterised by an accumulation of cystine in the lysosomes. The most severe form of the disorder is nephropathic cystinosis presenting Fanconi syndrome and leads without treatment to an end-stage renal failure before the age of ten. The only treatment available so far is cysteamine therapy, which delays disease progression by five years, but does not provide a cure for cystinosis patients. Current gene and cell based therapeutic approaches have not yet provided a suitable alternative. A potentially approach for a long-term treatment could be to generate autologous gene–modified stem cells by repairing the gene. Zinc Finger Nucleases (ZFNs) serve as a tool to increase HDR up to a 200,000-fold by introducing a double-stranded break (DSB). Thus, simple mutations in the CTNS gene could be corrected by introduction of a double-stranded break using ZFNs to boost the process of HDR with a suitable donor DNA sequence. A permanent repair of the most common lesion CTNS, a 57 kb deletion, could be achieved by ZFN-mediated HDR using a minigene CTNS promoter/cDNA construct. The thesis describes the design and testing of seven zinc finger nuclease pairs for their cleavage activity in vitro and in cellulo.. A highly sensitive assay to detect even low levels of ZFN-mediated HDR was also developed. Finally, to further investigate the role of autophagy in tissue injury in cystinotic cells an assay to monitor autophagy levels in the cells was successfully developed. This assay provides the opportunity to demonstrate functional restoration of CTNS after successful ZFN-HDR in cystinotic cells.