16 resultados para METABOLIC-REGULATION
Resumo:
The gastrointestinal tract (GIT) is a diverse ecosystem, and is colonised by a diverse array of bacteria, of which bifidobacteria are a significant component. Bifidobacteria are Gram-positive, saccharolytic, non-motile, non-sporulating, anaerobic, Y-shaped bacteria, which possess a high GC genome content. Certain bifidobacteria possess the ability to produce conjugated linoleic acid (CLA) from linoleic acid (LA) by a biochemical pathway that is hypothesised to be achieved via a linoleic isomerase. In Chapter two of this thesis it was found that the MCRA-specifying gene is not involved in CLA production in B. breve NCFB 2258, and that this gene specifies an oleate hydratase involved in the conversion of oleic acid into 10-hydroxystearic acid. Prebiotics are defined as non-digestible food ingredients that beneficially affect the host by selectively stimulating growth and/or activity of one or a limited number of bacteria in the colon. Key to the development of such novel prebiotics is to understand which carbohydrates support growth of bifidobacteria and how such carbohydrates are metabolised. In Chapter 3 of this thesis we describe the identification and characterisation of two neighbouring gene clusters involved in the metabolism of raffinose-containing carbohydrates (plus related carbohydrate melibiose) and melezitose by Bifidobacterium breve UCC2003. The fourth chapter of this thesis describes the analysis of transcriptional regulation of the raf and mel clusters. In the final experimental chapter two putative rep genes, designated repA7017 and repB7017, are identified on the megaplasmid pBb7017 of B. breve JCM 7017, the first bifidobacterial megaplasmid to be reported. One of these, repA7017, was subjected to an in-depth characterisation. The work described in this thesis has resulted in an improved understanding of bifidobacterial fatty acid and carbohydrate metabolism, Furthermore, attempts were made to develop novel genetic tools.
Resumo:
Glycolysis, glutaminolysis, the Krebs cycle and oxidative phosphorylation are the main metabolic pathways. Exposing cells to key metabolic substrates (glucose, glutamine and pyruvate); investigation of the contribution of substrates in stress conditions such as uncoupling and hypoxia was conducted. Glycolysis, O2 consumption, O2 and ATP levels and hypoxia inducible factor (HIF) signalling in PC12 cells were investigated. Upon uncoupling with FCCP mitochondria were depolarised similarly in all cases, but a strong increase in respiration was only seen in the cells fed on glutamine with either glucose or pyruvate. Inhibition of glutaminolysis reversed the glutamine dependant effect. Differential regulation of the respiratory response to FCCP by metabolic environment suggests mitochondrial uncoupling has a potential for substrate-specific inhibition of cell function. At reduced O2 availability (4 % and 0 % O2), cell bioenergetics and local oxygenation varied depending on the substrate composition. Results indicate that both supply and utilisation of key metabolic substrates can affect the pattern of HIF-1/2α accumulation by differentially regulating iO2¬, ATP levels and Akt/Erk/AMPK pathways. Inhibition of key metabolic pathways can modulate HIF regulatory pathways, metabolic responses and survival of cancer cells in hypoxia. Hypoxia leads to transcriptional activation, by HIF, of pyruvate dehydrogenase (PDH) kinase which phosphorylates and inhibits PDH, a mitochondrial enzyme that converts pyruvate into acetyl-CoA. The levels of PDH (total and phosphorylated), PDH kinase and HIF-1α were analysed in HCT116 and HCT116 SCO2-/- (deficient in complex IV of the respiratory chain) grown under 20.9 % and 3 % O2. Data indicate that regulation of PDH can occur in a manner independent of the HIF-1/PDH kinase 1 axis, mitochondrial respiration and the demand for acetyl-CoA. Collectively these results can be applied to many diseases; reduced nutrient supply and O2 during ischemia/stroke, hypoglycaemia in diabetes mellitus and cancer associated changes in uncoupling protein expression levels.
Resumo:
The central objective of this study is an examination of discourses of Irish female sexuality and of the apparatuses of control designed for its surveillance and regulation in the period nineteen-twenty to nineteen-forty. It is argued that during this period sexuality, and in particular female sexuality, became established as an icon of national identity. This thesis demonstrated that this identity was given symbolic embodiment in the discursive construction of an idealised, feminine subject, a subject who had purity and sexual morality as her defining characteristics. It is argued that female roles and in particular female sexuality, emerged as contested issues in post-colonial Ireland. This is not unusual given that women are frequently constructed in nationalist discourses as repositories of cultural heritage and symbols of national identity (Kandiyoti 1993). This thesis demonstrates that the Catholic Church played a central role in this process of establishing female sexuality as a national icon. Furthermore, it illustrates that through a process of identification and classification, women, whose behaviour contested the prescribed sexual norm, were categorized and labeled as 'wayward girls' 'unmarried mothers' or 'prostitutes'and mechanisms for their control were set in place. Finally, this thesis reveals that the development of these control apparatuses was mediated by class, with the sexuality of working class women being a primary target of surveillance, regulation and indeed reformation.
Resumo:
The full virulence of Xanthomonas campestris pv. campestris (Xcc) to plants depends upon cell-to-cell signalling mediated by the signal molecule DSF (for diffusible signal factor), that has been characterised as cis-11-methyl-2-dodecenoic acid. DSF-mediated signalling regulates motility, biofilm dynamics and the synthesis of particular virulence determinants. The synthesis and perception of the DSF signal molecule involves products of the rpf (regulation of pathogenicity factors) gene cluster. DSF synthesis is fully dependent on RpfF, which encodes a putative enoyl-CoA hydratase. A two-component system, comprising the complex sensor histidine kinase RpfC and the HD-GYP domain regulator RpfG, is implicated in DSF perception. The HD-GYP domain of RpfG is a phosphodiesterase working on cyclic di-GMP; DSF perception is thereby linked to the turnover of this intracellular second messenger. The full range of regulatory influences of the Rpf/DSF system and of cyclic di-GMP in Xcc has yet to be established. In order to further characterise the Rpf/DSF regulatory network in Xcc, a proteomic approach was used to compare protein expression in the wildtype and defined rpf mutants. This work shows that the Rpf/DSF system regulates a range of biological functions that are associated with virulence and biofilm formation but also reveals new functions mediated by DSF regulation. These functions include antibiotic resistance, detoxification and stress tolerance. Mutational analysis showed that several of these regulated protein functions contribute to virulence in Chinese radish. Interestingly, it was demonstrated that different patterns of protein expression are associated with mutations of rpfF, rpfC and rpfG. This suggests that RpfG and RpfC have broader roles in regulation other than perception and transduction of DSF. Taken together, this analysis indicates the broad and complex regulatory role of Rpf/DSF system and identifies a number of new functions under Rpf/DSF control, which were shown to play a role in virulence.
Resumo:
Schizophrenia represents one of the world’s most devastating illnesses due to its often lifelong course and debilitating nature. The treatment of schizophrenia has vastly improved over recent decades with the discovery of several antipsychotic compounds; however these drugs are not without adverse effects that must be addressed to maximize their therapeutic value. Newer, atypical, antipsychotics are associated with a compilation of serious metabolic side effects including weight gain, insulin resistance, fat deposition, glucose dysregulation and ensuing co-morbidities such as type II diabetes mellitus. The mechanisms underlying these side effects remain to be fully elucidated and adequate interventions are lacking. Further understanding of the factors that contribute these side effects is therefore required in order to develop effective adjunctive therapies and to potentially design antipsychotic drugs in the future with reduced impact on the metabolic health of patients. We investigated if the gut microbiota represented a novel mechanism contributing to the metabolic dysfunction associated with atypical antipsychotics. The gut microbiota comprises the bacteria that exist symbiotically within the gastrointestinal tract, and has been shown in recent years to be involved in several aspects of energy balance and metabolism. We have demonstrated that administration of certain antipsychotics in the rat results in an altered microbiota profile and, moreover, that the microbiota is required for the full scale of metabolic dysfunction to occur. We have further shown that specific antibiotics can attenuate certain aspects of olanzapine and risperidone–induced metabolic dysfunction, in particular fat deposition and adipose tissue inflammation. Mechanisms underlying this novel link appear to involve energy utilization via expression of lipogenic genes as well as reduced inflammatory tone. Taken together, these data indicate that the gut microbiota is an important factor involved in the myriad of metabolic complications associated with antipsychotic therapy. Furthermore, these data support the future investigation of microbial-based therapeutics for not only antipsychotic-induced weight gain but also for tackling the global obesity epidemic.
Resumo:
Pregnancy-Specific Glycoproteins (PSG) are the most abundant fetally expressed proteins in the maternal bloodstream at term. This multigene family are immunoglobulin superfamily members and are predominantly expressed in the syncytiotrophoblast of human placenta and in giant cells and spongiotrophoblast of rodent placenta. PSGs are encoded by seventeen genes in the mouse and ten genes in the human. Little is known about the function of this gene family, although they have been implicated in immune modulation and angiogenesis through the induction of cytokines such as IL-10 and TGFβ1 in monocytes, and more recently, have been shown to inhibit the platelet-fibrinogen interaction. I provide new information concerning the evolution of the murine Psg genomic locus structure and organisation, through the discovery of a recent gene inversion event of Psg22 within the major murine Psg cluster. In addition to this, I have performed an examination of the expression patterns of individual Psg genes in placental and non-placental tissues. This study centres on Psg22, which is the most abundant murine Psg transcript detected in the first half of pregnancy. A novel alternative splice variant transcript of Psg22 lacking the protein N1-domain was discovered, and similar to the full length isoform induces TGFβ1 in macrophage and monocytic cell lines. The identification of a bidirectional antisense long non-coding RNA transcript directly adjacent to Psg22 and its associated active local chromatin conformation, suggests an interesting epigenetic gene-specific regulatory mechanism that may be responsible for the high level of Psg22 expression relative to the other Psg family members upon trophoblast giant cell differentiation
Resumo:
The differentiation of stem cells into multiple lineages has been explored in vascular regenerative medicine. However, in the case of smooth muscle cells (SMC), issues exist concerning inefficient rates of differentiation. In stem cells, multiple repressors potentially downregulate myocardin, the potent SRF coactivator induced SMC transcription including Krüppel like zinc finger transcription factor-4 (KLF4). This thesis aimed to explore the role of KLF4 in the regulation of myocardin gene expression in human smooth muscle stem/progenitor cells (hSMSPC), a novel circulating stem cell identified in our laboratory which expresses low levels of myocardin and higher levels of KLF4. hSMSPC cells cultured in SmGM2 1% FBS with TGF-β1 (5 ng/ml “differentiation media”) show limited SMC cell differentiation potential. Furthermore, myocardin transduced hSMSPC cells cultured in differentiation media induced myofilamentous SMC like cells with expression of SM markers. Five potential KLF4 binding sites were identified in silico within 3.9Kb upstream of the translational start site of the human myocardin promoter. Chromatin immunoprecipitation assays verified that endogenous KLF4 binds the human myocardin promoter at -3702bp with Respect to the translation start site (-1). Transduction of lentiviral vectors encoding either myocardin cDNA (LV_myocardin) or KLF4 targeting shRNA (LV_shKLF4 B) induced human myocardin promoter activity in hSMSPCs. Silencing of KLF4 expression in differentiation media induced smooth muscle like morphology by day 5 in culture and increased overtime with expression of SMC markers in hSMSPCs. Implantation of silastic tubes into the rat peritoneal cavity induces formation of a tissue capsule structure which may be used as vascular grafts. Rat SMSPCs integrate into, strengthen and enhance the SMC component of such tubular capsules. These data demonstrate that KLF4 directly represses myocardin gene expression in hSMSPCs, which when differentiated, provide a potential source of SMCs in the development of autologous vascular grafts in regenerative medicine.
Resumo:
Inflammation is a complex and highly organised immune response to microbes and tissue injury. Recognition of noxious stimuli by pathogen recognition receptor families including Toll-like receptors results in the expression of hundreds of genes that encode cytokines, chemokines, antimicrobials and regulators of inflammation. Regulation of TLR activation responses is controlled by TLR tolerance which induces a global change in the cellular transcriptional expression profile resulting in gene specific suppression and induction of transcription. In this thesis the plasticity of TLR receptor tolerance is investigated using an in vivo, transcriptomics and functional approach to determine the plasticity of TLR tolerance in the regulation of inflammation. Firstly, using mice deficient in the negative regulator of TLR gene transcription, Bcl-3 (Bcl-3-/-) in a model of intestinal inflammation, we investigated the role of Bcl-3 in the regulation of intestinal inflammatory responses. Our data revealed a novel role for Bcl-3 in the regulation of epithelial cell proliferation and regeneration during intestinal inflammation. Furthermore this data revealed that increased Bcl-3 expression contributes to the development of inflammatory bowel disease (IBD). Secondly, we demonstrate that lipopolysaccharide tolerance is transient and recovery from LPS tolerance results in polarisation of macrophages to a previously un-described hybrid state (RM). In addition, we identified that RM cells have a unique transcriptional profile with suppression and induction of genes specific to this polarisation state. Furthermore, using a functional approach to characterise the outcomes of TLR tolerance plasticity, we demonstrate that cytokine transcription is uncoupled from cytokine secretion in macrophages following recovery from LPS tolerance. Here we demonstrate a novel mechanism of regulation of TLR tolerance through suppression of cytokine secretion in macrophages. We show that TNF-α is alternatively trafficked towards a degradative intracellular compartment. These studies demonstrate that TLR tolerance is a complex immunological response with the plasticity of this state playing an important role in the regulation of inflammation.
Resumo:
This thesis critically investigates the divergent international approaches to the legal regulation of the patentability of computer software inventions, with a view to identifying the reforms necessary for a certain, predictable and uniform inter-jurisdictional system of protection. Through a critical analysis of the traditional and contemporary US and European regulatory frameworks of protection for computer software inventions, this thesis demonstrates the confusion and legal uncertainty resulting from ill-defined patent laws and inconsistent patent practices as to the scope of the “patentable subject matter” requirement, further compounded by substantial flaws in the structural configuration of the decision-making procedures within which the patent systems operate. This damaging combination prevents the operation of an accessible and effective Intellectual Property (IP) legal framework of protection for computer software inventions, capable of securing adequate economic returns for inventors whilst preserving the necessary scope for innovation and competition in the field, to the ultimate benefit of society. In exploring the substantive and structural deficiencies in the European and US regulatory frameworks, this thesis develops to ultimately highlight that the best approach to the reform of the legal regulation of software patentability is two-tiered. It demonstrates that any reform to achieve international legal harmony first requires the legislature to individually clarify (Europe) or restate (US) the long-standing inadequate rules governing the scope of software “patentable subject matter”, together with the reorganisation of the unworkable structural configuration of the decision-making procedures. Informed by the critical analysis of the evolution of the “patentable subject matter” requirement for computer software in the US, this thesis particularly considers the potential of the reforms of the European patent system currently underway, to bring about certainty, predictability and uniformity in the legal treatment of computer software inventions.
Resumo:
Initial studies have demonstrated that intra- renal infusion of Ang (1-7) caused a diuresis and natriuresis that was proportional to the degree of activation of the Renin Angiotensin Aldosterone System (RAAS). This raised the question as why the magnitude of this diuresis and natriuresis was compromised in rats receiving a high sodium diet (suppressed RAAS) and enhanced in low sodium fed rats (activated RAAS)? Could the answer lie with changes in intra-renal AT1 or Mas receptor expression? Interestingly, the observed Ang (1-7) induced increases in sodium and water excretion in rats receiving either a low or normal sodium diet were and blocked in the presence of the AT 1 receptor antagonist (Losartan) in the presence of the, 'Mas' receptor antagonist (A-779). These data suggest that both AT1 and 'Mas' receptors need to be functional in order to fully mediate the renal responses to intra-renal Ang (1-7) infusion. Importantly, further experimentation also revealed that there is a proportional relationship between AT 1 receptor expression in the rat renal cortex and the magnitude of the excretory actions of intra renal Ang (1-7) infusion, which is only partially dependent on the level of 'Mas' receptor expression. These observations suggest that although Ang (1-7) induced increases in sodium and water excretion are mediated by the Mas receptor, the magnitude of these excretory responses appear to be dependent upon the level of AT 1 receptor expression and more specifically Ang II/ AT 1 receptor signalling. Thus in rats receiving a low sodium diet, Ang (1-7) acts via the Mas receptor to inhibit Ang II/ AT 1 receptor signalling. In rats receiving a high sodium diet the down regulated AT 1 receptor expression implies a reduction in Ang II/ AT 1 receptor signalling which renders the counter-regulatory effects of intra-renal Ang (1-7) infusion redundant.
Resumo:
Catabolic flexibility affords a bacterium the ability to utilise different sugar sources as carbon for energy. This is important for commensal lactobacilli like Lactobacillus ruminis which can be exposed to a variety of carbohydrates in vivo. However, little is known about the fermentation capabilities, metabolic pathways, genetic diversity or potential survival mechanisms used by L. ruminis in vivo. A combination of in vitro and in silico techniques was used to identify the catabolic pathways of L. ruminis. I also compared 16 L. ruminis strains using a panel of biochemical and survival assays, genetically, whole genome sequencing and RNA sequencing. Multi locus sequence typing revealed that strains clustered according to their host sources. Transcriptome analysis by RNAseq of two motile strains under three growth conditions, including swarming, identified the up-regulation of carbohydrate-related genes under swarming conditions. This suggests that carbohydrate flexibility may have an uncharacterised role in L. ruminis swarming. Following on from the assessment of L. ruminis catabolic flexibility, the porcine diet was supplemented with galactooligosaccharides or L. ruminis ATCC 25644 plus galactooligosaccharides. Supplementation of the porcine diet with galactooligosaccharide had no effect on microbiota diversity. In contrast, the L. ruminis plus galactooligosaccharide treatment significantly reduced the microbiota diversity. Diet is a major factor that affects the diversity of the gut microbiota. In order to get a more thorough understanding of diet and gut health in animals such as racehorses and domesticated herbivores, I determined the core microbiota of animals consuming different feeds. Interestingly, the gut microbiota diversity correlated with the host phylogeny of the animal. The genome of Lactobacillus equi (2.19 Mb), isolated from a healthy Irish thoroughbred was also sequenced and annotated, and comprised 2,263 predicted genes. The large repertoire of predicted carbohydrate-related genes may offer L. equi an advantage in the complex and harsh hindgut environment. In summary, this thesis uses functional genomics to assess the effect that carbohydrates have on commensal lactobacilli and the microbiota as a whole.
Resumo:
Due to the increasing incidence of antibiotic resistant strains, the use of novel antimicrobials, such as bacteriocins, has become an ever more likely prospect. Lacticin 3147 (of which there are two components, Ltnα and Ltnβ) and nisin belong to the subgroup of bacteriocins called the lantibiotics, which has attracted much attention in recent years. The lantibiotics are antimicrobial peptides that contain unusual amino acids resulting from a series of enzyme-mediated post translational modifications. Given that there have been relatively few examples of lantibiotic-specific resistance; these antimicrobials appear to represent valid alternatives to classical antibiotics. However, the fact that lantibiotics are naturally only produced in small amounts often hinders their commercialisation. In order to overcome this bottleneck, several approaches can be employed. For example, we can create a situation that reduces the quantity of a lantibiotic required to inhibit a target by combining it with other antimicrobials. Here, following an initial screen involving lacticin 3147 and several classical antibiotics, it was observed between lacticin 3147 and the commercial antibiotics polymyxin B/E function synergistically. This reduced the amounts of the individual antimicrobials required for kill and broadened the spectrum of inhibition of both agents. Upon combination with polymyxins, lacticin 3147, which has been associated with Gram positive targets only, actively targeted Gram negative species such as Escherichia coli and Cronobacter sp. An alternative means of addressing problems associated with lantibiotic yield is to better understand how production is regulated, and ultimately use this information to enhance peptide levels. With this in mind the regulation of lacticin 3147 production from the promoter Pbac was investigated using a green fluorescent protein (GFP) expression reporter system. This revealed that elements within both of the divergent operons of the lacticin 3147 gene cluster are involved in Pbac regulation. That is, LtnR, already established as a negative regulator of itself and the lacticin 3147 associated immunity genes, also acts as an activator of Pbac transcription. In contrast, an enhanced level of expression is observed in the absence of the lacticin 3147 structural genes, ltnA1 and ltnA2, indicating that these genes/gene products are involved in Pbac repression. In fact, through complementation of the ltnA2 gene, it was revealed that this regulation is more likely to be dependent on the presence of the gene transcript rather that the corresponding prepropeptide or modified Ltnβ. It may be that if lacticin 3147 production is successfully enhanced, the ability of the producing cell to protect itself may become an issue. To prepare for such a possibility a bioengineered derivative of the lacticin 3147 immunity protein LtnI (LtnI I81V) which provides enhanced protection was discovered through an in depth investigation involving the site and saturation mutagenesis of this protein. In addition, the creation of truncated forms of LtnI allowed the identification of important and essential regions of this immunity protein. Finally, as mentioned, self-immunity is essential to prevent self-killing. However the discovery of nisin U immunity and regulatory gene homologues (spiFEGRR’K) within the pathogenic strain S. infantarius subsp. infantarius is a cause for concern as it represents an example of immune mimicry, a form of lantibiotic-specific resistance. The ability of spiFEG to confer protection was apparent when they successfully provided protection to nisin A, F, Z, Q and U when expressed heterologously in the nisin sensitive L. lactis HP host. As a consequence of the studies presented in this thesis, it is likely that strategies will emerge that will facilitate the production of greater levels of lacticin 3147 production and lead to enhanced immunity in lactococcal backgrounds. Alternatively the need for enhanced production could be avoided through the use of antimicrobial combinations. In addition, providing awareness of the threats of the emergence of resistance through immune mimicry can allow researchers to develop strategies to prevent this phenomenon from leading to the dissemination of lantibiotic resistance.
Resumo:
This thesis investigates the mechanisms by which HRG-1 contributes to the invasive and cytoprotective signalling pathways in cancer cells through its effects on VATPase activity and heme transport. Plasma membrane-localised V-ATPase activity correlates with enhanced metastatic potential in cancer cells, which is attributed to extrusion of protons into the extracellular space and activation of pH-sensitive, extracellular matrix degrading-proteases. We found that HRG-1 is co-expressed with the V-ATPase at the plasma membrane of certain aggressive cancer cell types. Modulation of HRG-1 expression altered both the localisation and activity of the VATPase. We also found that HRG-1 enhances trafficking of essential transporters such as the glucose transporter (GLUT-1) in cancer cells, and increases glucose uptake, which is required for cancer cell growth, metabolism and V-ATPase assembly. Heme is potentially cytotoxic, owing to its iron moiety, and therefore the trafficking of heme is tightly controlled in cells. We hypothesised that HRG-1 is required for the transport of heme to intracellular compartments. Importantly, we found that HRG-1 interacts with the heme oxygenases that are necessary for heme catabolism. HRG-1 is also required for trafficking of both heme-bound and nonheme-bound receptors and suppression of HRG-1 results in perturbed receptor trafficking to the lysosome. Suppression of HRG-1 in HeLa cells increases toxic heme accumulation, reactive oxygen species accumulation, and DNA damage resulting in caspasedependent cell death. Mutation of essential heme binding residues in HRG-1 results in decreased heme binding to HRG-1. Interestingly, cells expressing heme-binding HRG-1 mutants exhibit decreased internalisation of the transferrin receptor compared to cells expressing wildtype HRG-1. These findings suggest that HRG- 1/heme trafficking contributes to a hitherto unappreciated aspect of receptormediated endocytosis. Overall, the findings of this thesis show that HRG-1-mediated regulation of intracellular and extracellular pH through V-ATPase activity is essential for a functioning endocytic pathway. This is critical for cells to acquire nutrients such as folate, iron and glucose and to mediate signalling in response to growth factor activation. Thus, HRG-1 facilitates enhanced metabolic activity of cancer cells to enable tumour growth and metastasis.
Resumo:
The Tribbles family of genes consist of three members; TRIB1, TRIB2 and TRIB3. Trib1 and Trib2 have been identified as oncogenes that can induce AML in mice. However little is known about how the expressions of the Tribbles family genes are controlled in the cell during haematopoiesis or leukaemogenesis. To investigate the Tribbles genes in leukaemia a bioinformatics approach was used. TRIB2 expression was found to be elevated in T-ALL and ALL with t(1;19). TRIB1 was found not to be significantly elevated in any leukaemic subtypes. Analyses of the TRIB1 and TRIB2 gene signatures in both leukaemic and normal haematopoietic cells identified pathways and transcription factors associated with these signatures. Pathways enriched for the TRIB1 signature included TLR signalling pathways and NF-κB pathways. Transcription factors enriched for this signature include C/EBP and SRF. Enriched for the TRIB2 signature includes T cell signalling pathways and Notch signalling pathways. Transcription factors enriched for this signature include E2F and ETS. Further investigation in vitro confirmed the finding that E2F1 was as a potential regulator of TRIB2 expression. E2F1 is able to directly bind to the TRIB2 promoter region and induce TRIB2 expression. C/EBPα p42 was found to inhibit E2F1 and the p30 isoform was found to cooperate with E2F1 induced activation of the TRIB2 promoter. Indicating the potential presence of a regulatory loop involved in the regulation of the TRIB2 gene. In conclusion we have investigated the Tribbles gene signatures in both normal haematopoietic and leukaemic cells. This has led to the identification of a number of pathways and transcription factors associated with these genes. We have also identified a family of transcription factors directly responsible for the regulation of TRIB2 expression. This regulatory pathway has the potential to be targeted in the treatment of leukaemia with a high TRIB2 signature.
Resumo:
Using C57BL/6J mice fed whey protein isolate (WPI) enriched high fat (HFD) or low-fat diets (LFD), this study tested the hypothesis that WPI directly impacts on adiposity by influencing lipid metabolism. WPI suppressed HFD-induced body fat and increased lean mass at 8 weeks of dietary challenge despite elevated plasma triacylglycerol (TAG) levels, suggesting reduced TAG storage. WPI reduced HFD-associated hypothalamic leptin and insulin receptor (IR) mRNA expression, and prevented HFD-associated reductions in adipose tissue IR and glucose transporter 4 expression. These effects were largely absent at 21 weeks of HFD feeding, however WPI increased lean mass and cause a trend towards decreased fat mass, with notable increased Lactobacillus and decreased Clostridium gut bacterial species. Increasing the protein to carbohydrate ratio enhanced the above effects, and shifted the gut microbiota composition away from the HFD group. Seven weeks of WPI intake with a LFD decreased insulin signalling gene expression in the adipose tissue in association with an increased fat accumulation. WPI reduced intestinal weight and length, suggesting a potential functional relationship between WPI, gastro-intestinal morphology and insulin related signalling in the adipose. Extending the study to 15 weeks, did not affect adipose fat weight, but decreased energy intake, weight gain and intestinal length. The functionality of protein sensing lysophosphatidic acid receptor 5 (LPA5) in 3T3-L1 pre-adipocytes was assessed. Over-expression of the receptor in 3T3-L1 pre-adipocytes provided a growth advantage to the cells and suppressed cellular differentiation into mature fat cells. In conclusion, the data demonstrates WPI impacts on adiposity by influencing lipid metabolism in a temporal manner, resulting possibly due to changes in lean mass, hypothalamic and adipose gene expression, gut microbiota and gastrointestinal morphology. The data also showed LPA5 is a novel candidate in regulating of preadipocyte growth and differentiation, and may mediate dietary protein effects on adipose tissue.