6 resultados para work system

em Boston University Digital Common


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Internet has brought unparalleled opportunities for expanding availability of research by bringing down economic and physical barriers to sharing. The digitally networked environment promises to democratize access, carry knowledge beyond traditional research niches, accelerate discovery, encourage new and interdisciplinary approaches to ever more complex research challenges, and enable new computational research strategies. However, despite these opportunities for increasing access to knowledge, the prices of scholarly journals have risen sharply over the past two decades, often forcing libraries to cancel subscriptions. Today even the wealthiest institutions cannot afford to sustain all of the journals needed by their faculties and students. To take advantage of the opportunities created by the Internet and to further their mission of creating, preserving, and disseminating knowledge, many academic institutions are taking steps to capture the benefits of more open research sharing. Colleges and universities have built digital repositories to preserve and distribute faculty scholarly articles and other research outputs. Many individual authors have taken steps to retain the rights they need, under copyright law, to allow their work to be made freely available on the Internet and in their institutionâ s repository. And, faculties at some institutions have adopted resolutions endorsing more open access to scholarly articles. Most recently, on February 12, 2008, the Faculty of Arts and Sciences (FAS) at Harvard University took a landmark step. The faculty voted to adopt a policy requiring that faculty authors send an electronic copy of their scholarly articles to the universityâ s digital repository and that faculty authors automatically grant copyright permission to the university to archive and to distribute these articles unless a faculty member has waived the policy for a particular article. Essentially, the faculty voted to make open access to the results of their published journal articles the default policy for the Faculty of Arts and Sciences of Harvard University. As of March 2008, a proposal is also under consideration in the University of California system by which faculty authors would commit routinely to grant copyright permission to the university to make copies of the facultyâ s scholarly work openly accessible over the Internet. Inspired by the example set by the Harvard faculty, this White Paper is addressed to the faculty and administrators of academic institutions who support equitable access to scholarly research and knowledge, and who believe that the institution can play an important role as steward of the scholarly literature produced by its faculty. This paper discusses both the motivation and the process for establishing a binding institutional policy that automatically grants a copyright license from each faculty member to permit deposit of his or her peer-reviewed scholarly articles in institutional repositories, from which the works become available for others to read and cite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a prototype implementation of a Distributed File System (DFS) based on the Adaptive Information Dispersal Algorithm (AIDA). Using AIDA, a file block is encoded and dispersed into smaller blocks stored on a number of DFS nodes distributed over a network. The implementation devises file creation, read, and write operations. In particular, when reading a file, the DFS accepts an optional timing constraint, which it uses to determine the level of redundancy needed for the read operation. The tighter the timing constraint, the more nodes in the DFS are queried for encoded blocks. Write operations update all blocks in all DFS nodes--with future implementations possibly including the use of read and write quorums. This work was conducted under the supervision of Professor Azer Bestavros (best@cs.bu.edu) in the Computer Science Department as part of Mohammad Makarechian's Master's project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent work has shown the prevalence of small-world phenomena [28] in many networks. Small-world graphs exhibit a high degree of clustering, yet have typically short path lengths between arbitrary vertices. Internet AS-level graphs have been shown to exhibit small-world behaviors [9]. In this paper, we show that both Internet AS-level and router-level graphs exhibit small-world behavior. We attribute such behavior to two possible causes–namely the high variability of vertex degree distributions (which were found to follow approximately a power law [15]) and the preference of vertices to have local connections. We show that both factors contribute with different relative degrees to the small-world behavior of AS-level and router-level topologies. Our findings underscore the inefficacy of the Barabasi-Albert model [6] in explaining the growth process of the Internet, and provide a basis for more promising approaches to the development of Internet topology generators. We present such a generator and show the resemblance of the synthetic graphs it generates to real Internet AS-level and router-level graphs. Using these graphs, we have examined how small-world behaviors affect the scalability of end-system multicast. Our findings indicate that lower variability of vertex degree and stronger preference for local connectivity in small-world graphs results in slower network neighborhood expansion, and in longer average path length between two arbitrary vertices, which in turn results in better scaling of end system multicast.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

System F is a type system that can be seen as both a proof system for second-order propositional logic and as a polymorphic programming language. In this work we explore several extensions of System F by types which express subtyping constraints. These systems include terms which represent proofs of subtyping relationships between types. Given a proof that one type is a subtype of another, one may use a coercion term constructor to coerce terms from the first type to the second. The ability to manipulate type constraints as first-class entities gives these systems a lot of expressive power, including the ability to encode generalized algebraic data types and intensional type analysis. The main contributions of this work are in the formulation of constraint types and a proof of strong normalization for an extension of System F with constraint types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A foundational issue underlying many overlay network applications ranging from routing to peer-to-peer file sharing is that of connectivity management, i.e., folding new arrivals into an existing overlay, and rewiring to cope with changing network conditions. Previous work has considered the problem from two perspectives: devising practical heuristics for specific applications designed to work well in real deployments, and providing abstractions for the underlying problem that are analytically tractable, especially via game-theoretic analysis. In this paper, we unify these two thrusts by using insights gleaned from novel, realistic theoretic models in the design of Egoist – a distributed overlay routing system that we implemented, deployed, and evaluated on PlanetLab. Using extensive measurements of paths between nodes, we demonstrate that Egoist’s neighbor selection primitives significantly outperform existing heuristics on a variety of performance metrics, including delay, available bandwidth, and node utilization. Moreover, we demonstrate that Egoist is competitive with an optimal, but unscalable full-mesh approach, remains highly effective under significant churn, is robust to cheating, and incurs minimal overhead. Finally, we use a multiplayer peer-to-peer game to demonstrate the value of Egoist to end-user applications. This technical report supersedes BUCS-TR-2007-013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both animals and mobile robots, or animats, need adaptive control systems to guide their movements through a novel environment. Such control systems need reactive mechanisms for exploration, and learned plans to efficiently reach goal objects once the environment is familiar. How reactive and planned behaviors interact together in real time, and arc released at the appropriate times, during autonomous navigation remains a major unsolved problern. This work presents an end-to-end model to address this problem, named SOVEREIGN: A Self-Organizing, Vision, Expectation, Recognition, Emotion, Intelligent, Goal-oriented Navigation system. The model comprises several interacting subsystems, governed by systems of nonlinear differential equations. As the animat explores the environment, a vision module processes visual inputs using networks that arc sensitive to visual form and motion. Targets processed within the visual form system arc categorized by real-time incremental learning. Simultaneously, visual target position is computed with respect to the animat's body. Estimates of target position activate a motor system to initiate approach movements toward the target. Motion cues from animat locomotion can elicit orienting head or camera movements to bring a never target into view. Approach and orienting movements arc alternately performed during animat navigation. Cumulative estimates of each movement, based on both visual and proprioceptive cues, arc stored within a motor working memory. Sensory cues are stored in a parallel sensory working memory. These working memories trigger learning of sensory and motor sequence chunks, which together control planned movements. Effective chunk combinations arc selectively enhanced via reinforcement learning when the animat is rewarded. The planning chunks effect a gradual transition from reactive to planned behavior. The model can read-out different motor sequences under different motivational states and learns more efficient paths to rewarded goals as exploration proceeds. Several volitional signals automatically gate the interactions between model subsystems at appropriate times. A 3-D visual simulation environment reproduces the animat's sensory experiences as it moves through a simplified spatial environment. The SOVEREIGN model exhibits robust goal-oriented learning of sequential motor behaviors. Its biomimctic structure explicates a number of brain processes which are involved in spatial navigation.