1 resultado para waiting point nuclei

em Boston University Digital Common


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove that first order logic is strictly weaker than fixed point logic over every infinite classes of finite ordered structures with unary relations: Over these classes there is always an inductive unary relation which cannot be defined by a first-order formula, even when every inductive sentence (i.e., closed formula) can be expressed in first-order over this particular class. Our proof first establishes a property valid for every unary relation definable by first-order logic over these classes which is peculiar to classes of ordered structures with unary relations. In a second step we show that this property itself can be expressed in fixed point logic and can be used to construct a non-elementary unary relation.