3 resultados para vector-borne diseases

em Boston University Digital Common


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Chronic illness and premature mortality from malaria, water-borne diseases, and respiratory illnesses have long been known to diminish the welfare of individuals and households in developing countries. Previous research has also shown that chronic diseases among farming populations suppress labor productivity and agricultural output. As the illness and death toll from HIV/AIDS continues to climb in most of sub-Saharan Africa, concern has arisen that the loss of household labor it causes will reduce crop yields, impoverish farming households, intensify malnutrition, and suppress growth in the agricultural sector. If chronic morbidity and premature mortality among individuals in farming households have substantial impacts on household production, and if a large number of households are affected, it is possible that an increase in morbidity and mortality from HIV/AIDS or other diseases could affect national aggregate output and exports. If, on the other hand, the impact at the household farm level is modest, or if relatively few households are affected, there is likely to be little effect on aggregate production across an entire country. Which of these outcomes is more likely in West Africa is unknown. Little rigorous, quantitative research has been published on the impacts of AIDS on smallholder farm production, particularly in West Africa. The handful of studies that have been conducted have looked mainly at small populations in areas of very high HIV prevalence in southern and eastern Africa. Conclusions about how HIV/AIDS, and other causes of chronic morbidity and mortality, are affecting agriculture across the continent cannot be drawn from these studies. In view of the importance of agriculture, and particularly smallholder agriculture, in the economies of most African countries and the scarcity of resources for health interventions, it is valuable to identify, describe, and quantify the impact of chronic morbidity and mortality on smallholder production of important crops in West Africa. One such crop is cocoa. In Ghana, cocoa is a crop of national importance that is produced almost exclusively by smallholder households. In 2003, Ghana was the world’s second-largest producer of cocoa. Cocoa accounted for a quarter of Ghana’s export revenues that year and generated 15 percent of employment. The success and growth of the cocoa industry is thus vital to the country’s overall social and economic development. Study Objectives and Methods In February and March 2005, the Center for International Health and Development of Boston University (CIHD) and the Department of Agricultural Economics and Agribusiness (DAEA) of the University of Ghana, with financial support from the Africa Bureau of the U.S. Agency for International Development and from Mars, Inc., which is a major purchaser of West African cocoa, conducted a survey of a random sample of cocoa farming households in the Western Region of Ghana. The survey documented the extent of chronic morbidity and mortality in cocoa growing households in the Western Region of Ghana, the country’s largest cocoa growing region, and analyzed the impact of morbidity and mortality on cocoa production. It aimed to answer three specific research questions. (1) What is the baseline status of the study population in terms of household size and composition, acute and chronic morbidity, recent mortality, and cocoa production? (2) What is the relationship between household size and cocoa production, and how can this relationship be used to understand the impact of adult mortality and chronic morbidity on the production of cocoa at the household level? The study population was the approximately 42,000 cocoa farming households in the southern part of Ghana’s Western Region. A random sample of households was selected from a roster of eligible households developed from existing administrative information. Under the supervision of the University of Ghana field team, enumerators were graduate students of the Department of Agricultural Economics and Agribusiness or employees of the Cocoa Services Division. A total of 632 eligible farmers participated in the survey. Of these, 610 provided complete responses to all questions needed to complete the multivariate statistical analysis reported here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes neural network models for adaptive control of arm movement trajectories during visually guided reaching and, more generally, a framework for unsupervised real-time error-based learning. The models clarify how a child, or untrained robot, can learn to reach for objects that it sees. Piaget has provided basic insights with his concept of a circular reaction: As an infant makes internally generated movements of its hand, the eyes automatically follow this motion. A transformation is learned between the visual representation of hand position and the motor representation of hand position. Learning of this transformation eventually enables the child to accurately reach for visually detected targets. Grossberg and Kuperstein have shown how the eye movement system can use visual error signals to correct movement parameters via cerebellar learning. Here it is shown how endogenously generated arm movements lead to adaptive tuning of arm control parameters. These movements also activate the target position representations that are used to learn the visuo-motor transformation that controls visually guided reaching. The AVITE model presented here is an adaptive neural circuit based on the Vector Integration to Endpoint (VITE) model for arm and speech trajectory generation of Bullock and Grossberg. In the VITE model, a Target Position Command (TPC) represents the location of the desired target. The Present Position Command (PPC) encodes the present hand-arm configuration. The Difference Vector (DV) population continuously.computes the difference between the PPC and the TPC. A speed-controlling GO signal multiplies DV output. The PPC integrates the (DV)·(GO) product and generates an outflow command to the arm. Integration at the PPC continues at a rate dependent on GO signal size until the DV reaches zero, at which time the PPC equals the TPC. The AVITE model explains how self-consistent TPC and PPC coordinates are autonomously generated and learned. Learning of AVITE parameters is regulated by activation of a self-regulating Endogenous Random Generator (ERG) of training vectors. Each vector is integrated at the PPC, giving rise to a movement command. The generation of each vector induces a complementary postural phase during which ERG output stops and learning occurs. Then a new vector is generated and the cycle is repeated. This cyclic, biphasic behavior is controlled by a specialized gated dipole circuit. ERG output autonomously stops in such a way that, across trials, a broad sample of workspace target positions is generated. When the ERG shuts off, a modulator gate opens, copying the PPC into the TPC. Learning of a transformation from TPC to PPC occurs using the DV as an error signal that is zeroed due to learning. This learning scheme is called a Vector Associative Map, or VAM. The VAM model is a general-purpose device for autonomous real-time error-based learning and performance of associative maps. The DV stage serves the dual function of reading out new TPCs during performance and reading in new adaptive weights during learning, without a disruption of real-time operation. YAMs thus provide an on-line unsupervised alternative to the off-line properties of supervised error-correction learning algorithms. YAMs and VAM cascades for learning motor-to-motor and spatial-to-motor maps are described. YAM models and Adaptive Resonance Theory (ART) models exhibit complementary matching, learning, and performance properties that together provide a foundation for designing a total sensory-cognitive and cognitive-motor autonomous system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article compares the performance of Fuzzy ARTMAP with that of Learned Vector Quantization and Back Propagation on a handwritten character recognition task. Training with Fuzzy ARTMAP to a fixed criterion used many fewer epochs. Voting with Fuzzy ARTMAP yielded the highest recognition rates.