4 resultados para utility grid operations

em Boston University Digital Common


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider challenges associated with application domains in which a large number of distributed, networked sensors must perform a sensing task repeatedly over time. For the tasks we consider, there are three significant challenges to address. First, nodes have resource constraints imposed by their finite power supply, which motivates computations that are energy-conserving. Second, for the applications we describe, the utility derived from a sensing task may vary depending on the placement and size of the set of nodes who participate, which often involves complex objective functions for nodes to target. Finally, nodes must attempt to realize these global objectives with only local information. We present a model for such applications, in which we define appropriate global objectives based on utility functions and specify a cost model for energy consumption. Then, for an important class of utility functions, we present distributed algorithms which attempt to maximize the utility derived from the sensor network over its lifetime. The algorithms and experimental results we present enable nodes to adaptively change their roles over time and use dynamic reconfiguration of routes to load balance energy consumption in the network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cost and complexity of deploying measurement infrastructure in the Internet for the purpose of analyzing its structure and behavior is considerable. Basic questions about the utility of increasing the number of measurements and/or measurement sites have not yet been addressed which has lead to a "more is better" approach to wide-area measurements. In this paper, we quantify the marginal utility of performing wide-area measurements in the context of Internet topology discovery. We characterize topology in terms of nodes, links, node degree distribution, and end-to-end flows using statistical and information-theoretic techniques. We classify nodes discovered on the routes between a set of 8 sources and 1277 destinations to differentiate nodes which make up the so called "backbone" from those which border the backbone and those on links between the border nodes and destination nodes. This process includes reducing nodes that advertise multiple interfaces to single IP addresses. We show that the utility of adding sources goes down significantly after 2 from the perspective of interface, node, link and node degree discovery. We show that the utility of adding destinations is constant for interfaces, nodes, links and node degree indicating that it is more important to add destinations than sources. Finally, we analyze paths through the backbone and show that shared link distributions approximate a power law indicating that a small number of backbone links in our study are very heavily utilized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grid cells in the dorsal segment of the medial entorhinal cortex (dMEC) show remarkable hexagonal activity patterns, at multiple spatial scales, during spatial navigation. How these hexagonal patterns arise has excited intense interest. It has previously been shown how a selforganizing map can convert firing patterns across entorhinal grid cells into hippocampal place cells that are capable of representing much larger spatial scales. Can grid cell firing fields also arise during navigation through learning within a self-organizing map? A neural model is proposed that converts path integration signals into hexagonal grid cell patterns of multiple scales. This GRID model creates only grid cell patterns with the observed hexagonal structure, predicts how these hexagonal patterns can be learned from experience, and can process biologically plausible neural input and output signals during navigation. These results support a unified computational framework for explaining how entorhinal-hippocampal interactions support spatial navigation.