7 resultados para typical program
em Boston University Digital Common
Resumo:
This study explores the effectiveness of a Church-based recovery program for the mentally ill in Korea where many Christian communities view mental illness as evidence of sin. Building on theological and psychological literature, an empirical study was conducted with participants in the alternative program of the Han-ma-um community. Data analysis revealed that this program, which views mental disorders as illness rather than sin, helps participants build self-respect and enables families to provide support as they move toward recovery. Based on this empirical examination, recommendations for refinement and expansion of the program and avenues for future research are proposed.
Resumo:
Neoplastic tissue is typically highly vascularized, contains abnormal concentrations of extracellular proteins (e.g. collagen, proteoglycans) and has a high interstitial fluid pres- sure compared to most normal tissues. These changes result in an overall stiffening typical of most solid tumors. Elasticity Imaging (EI) is a technique which uses imaging systems to measure relative tissue deformation and thus noninvasively infer its mechanical stiffness. Stiffness is recovered from measured deformation by using an appropriate mathematical model and solving an inverse problem. The integration of EI with existing imaging modal- ities can improve their diagnostic and research capabilities. The aim of this work is to develop and evaluate techniques to image and quantify the mechanical properties of soft tissues in three dimensions (3D). To that end, this thesis presents and validates a method by which three dimensional ultrasound images can be used to image and quantify the shear modulus distribution of tissue mimicking phantoms. This work is presented to motivate and justify the use of this elasticity imaging technique in a clinical breast cancer screening study. The imaging methodologies discussed are intended to improve the specificity of mammography practices in general. During the development of these techniques, several issues concerning the accuracy and uniqueness of the result were elucidated. Two new algorithms for 3D EI are designed and characterized in this thesis. The first provides three dimensional motion estimates from ultrasound images of the deforming ma- terial. The novel features include finite element interpolation of the displacement field, inclusion of prior information and the ability to enforce physical constraints. The roles of regularization, mesh resolution and an incompressibility constraint on the accuracy of the measured deformation is quantified. The estimated signal to noise ratio of the measured displacement fields are approximately 1800, 21 and 41 for the axial, lateral and eleva- tional components, respectively. The second algorithm recovers the shear elastic modulus distribution of the deforming material by efficiently solving the three dimensional inverse problem as an optimization problem. This method utilizes finite element interpolations, the adjoint method to evaluate the gradient and a quasi-Newton BFGS method for optimiza- tion. Its novel features include the use of the adjoint method and TVD regularization with piece-wise constant interpolation. A source of non-uniqueness in this inverse problem is identified theoretically, demonstrated computationally, explained physically and overcome practically. Both algorithms were test on ultrasound data of independently characterized tissue mimicking phantoms. The recovered elastic modulus was in all cases within 35% of the reference elastic contrast. Finally, the preliminary application of these techniques to tomosynthesis images showed the feasiblity of imaging an elastic inclusion.
Resumo:
The CIL compiler for core Standard ML compiles whole programs using a novel typed intermediate language (TIL) with intersection and union types and flow labels on both terms and types. The CIL term representation duplicates portions of the program where intersection types are introduced and union types are eliminated. This duplication makes it easier to represent type information and to introduce customized data representations. However, duplication incurs compile-time space costs that are potentially much greater than are incurred in TILs employing type-level abstraction or quantification. In this paper, we present empirical data on the compile-time space costs of using CIL as an intermediate language. The data shows that these costs can be made tractable by using sufficiently fine-grained flow analyses together with standard hash-consing techniques. The data also suggests that non-duplicating formulations of intersection (and union) types would not achieve significantly better space complexity.
Resumo:
How do humans use predictive contextual information to facilitate visual search? How are consistently paired scenic objects and positions learned and used to more efficiently guide search in familiar scenes? For example, a certain combination of objects can define a context for a kitchen and trigger a more efficient search for a typical object, such as a sink, in that context. A neural model, ARTSCENE Search, is developed to illustrate the neural mechanisms of such memory-based contextual learning and guidance, and to explain challenging behavioral data on positive/negative, spatial/object, and local/distant global cueing effects during visual search. The model proposes how global scene layout at a first glance rapidly forms a hypothesis about the target location. This hypothesis is then incrementally refined by enhancing target-like objects in space as a scene is scanned with saccadic eye movements. The model clarifies the functional roles of neuroanatomical, neurophysiological, and neuroimaging data in visual search for a desired goal object. In particular, the model simulates the interactive dynamics of spatial and object contextual cueing in the cortical What and Where streams starting from early visual areas through medial temporal lobe to prefrontal cortex. After learning, model dorsolateral prefrontal cortical cells (area 46) prime possible target locations in posterior parietal cortex based on goalmodulated percepts of spatial scene gist represented in parahippocampal cortex, whereas model ventral prefrontal cortical cells (area 47/12) prime possible target object representations in inferior temporal cortex based on the history of viewed objects represented in perirhinal cortex. The model hereby predicts how the cortical What and Where streams cooperate during scene perception, learning, and memory to accumulate evidence over time to drive efficient visual search of familiar scenes.