8 resultados para translation memories

em Boston University Digital Common


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Programmers of parallel processes that communicate through shared globally distributed data structures (DDS) face a difficult choice. Either they must explicitly program DDS management, by partitioning or replicating it over multiple distributed memory modules, or be content with a high latency coherent (sequentially consistent) memory abstraction that hides the DDS' distribution. We present Mermera, a new formalism and system that enable a smooth spectrum of noncoherent shared memory behaviors to coexist between the above two extremes. Our approach allows us to define known noncoherent memories in a new simple way, to identify new memory behaviors, and to characterize generic mixed-behavior computations. The latter are useful for programming using multiple behaviors that complement each others' advantages. On the practical side, we show that the large class of programs that use asynchronous iterative methods (AIM) can run correctly on slow memory, one of the weakest, and hence most efficient and fault-tolerant, noncoherence conditions. An example AIM program to solve linear equations, is developed to illustrate: (1) the need for concurrently mixing memory behaviors, and, (2) the performance gains attainable via noncoherence. Other program classes tolerate weak memory consistency by synchronizing in such a way as to yield executions indistinguishable from coherent ones. AIM computations on noncoherent memory yield noncoherent, yet correct, computations. We report performance data that exemplifies the potential benefits of noncoherence, in terms of raw memory performance, as well as application speed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Speech can be understood at widely varying production rates. A working memory is described for short-term storage of temporal lists of input items. The working memory is a cooperative-competitive neural network that automatically adjusts its integration rate, or gain, to generate a short-term memory code for a list that is independent of item presentation rate. Such an invariant working memory model is used to simulate data of Repp (1980) concerning the changes of phonetic category boundaries as a function of their presentation rate. Thus the variability of categorical boundaries can be traced to the temporal in variance of the working memory code.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extension to the orientational harmonic model is presented as a rotation, translation, and scale invariant representation of geometrical form in biological vision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proposed model, called the combinatorial and competitive spatio-temporal memory or CCSTM, provides an elegant solution to the general problem of having to store and recall spatio-temporal patterns in which states or sequences of states can recur in various contexts. For example, fig. 1 shows two state sequences that have a common subsequence, C and D. The CCSTM assumes that any state has a distributed representation as a collection of features. Each feature has an associated competitive module (CM) containing K cells. On any given occurrence of a particular feature, A, exactly one of the cells in CMA will be chosen to represent it. It is the particular set of cells active on the previous time step that determines which cells are chosen to represent instances of their associated features on the current time step. If we assume that typically S features are active in any state then any state has K^S different neural representations. This huge space of possible neural representations of any state is what underlies the model's ability to store and recall numerous context-sensitive state sequences. The purpose of this paper is simply to describe this mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recognition of 3-D objects from sequences of their 2-D views is modeled by a family of self-organizing neural architectures, called VIEWNET, that use View Information Encoded With NETworks. VIEWNET incorporates a preprocessor that generates a compressed but 2-D invariant representation of an image, a supervised incremental learning system that classifies the preprocessed representations into 2-D view categories whose outputs arc combined into 3-D invariant object categories, and a working memory that makes a 3-D object prediction by accumulating evidence from 3-D object category nodes as multiple 2-D views are experienced. The simplest VIEWNET achieves high recognition scores without the need to explicitly code the temporal order of 2-D views in working memory. Working memories are also discussed that save memory resources by implicitly coding temporal order in terms of the relative activity of 2-D view category nodes, rather than as explicit 2-D view transitions. Variants of the VIEWNET architecture may also be used for scene understanding by using a preprocessor and classifier that can determine both What objects are in a scene and Where they are located. The present VIEWNET preprocessor includes the CORT-X 2 filter, which discounts the illuminant, regularizes and completes figural boundaries, and suppresses image noise. This boundary segmentation is rendered invariant under 2-D translation, rotation, and dilation by use of a log-polar transform. The invariant spectra undergo Gaussian coarse coding to further reduce noise and 3-D foreshortening effects, and to increase generalization. These compressed codes are input into the classifier, a supervised learning system based on the fuzzy ARTMAP algorithm. Fuzzy ARTMAP learns 2-D view categories that are invariant under 2-D image translation, rotation, and dilation as well as 3-D image transformations that do not cause a predictive error. Evidence from sequence of 2-D view categories converges at 3-D object nodes that generate a response invariant under changes of 2-D view. These 3-D object nodes input to a working memory that accumulates evidence over time to improve object recognition. ln the simplest working memory, each occurrence (nonoccurrence) of a 2-D view category increases (decreases) the corresponding node's activity in working memory. The maximally active node is used to predict the 3-D object. Recognition is studied with noisy and clean image using slow and fast learning. Slow learning at the fuzzy ARTMAP map field is adapted to learn the conditional probability of the 3-D object given the selected 2-D view category. VIEWNET is demonstrated on an MIT Lincoln Laboratory database of l28x128 2-D views of aircraft with and without additive noise. A recognition rate of up to 90% is achieved with one 2-D view and of up to 98.5% correct with three 2-D views. The properties of 2-D view and 3-D object category nodes are compared with those of cells in monkey inferotemporal cortex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A working memory model is described that is capable of storing and recalling arbitrary temporal sequences of events, including repeated items. These memories encode the invariant temporal order of sequential events that may be presented at widely differing speeds, durations, and interstimulus intervals. This temporal order code is designed to enable all possible groupings of sequential events to be stably learned and remembered in real time, even as new events perturb the system.