28 resultados para traffic classification
em Boston University Digital Common
Resumo:
The increasing practicality of large-scale flow capture makes it possible to conceive of traffic analysis methods that detect and identify a large and diverse set of anomalies. However the challenge of effectively analyzing this massive data source for anomaly diagnosis is as yet unmet. We argue that the distributions of packet features (IP addresses and ports) observed in flow traces reveals both the presence and the structure of a wide range of anomalies. Using entropy as a summarization tool, we show that the analysis of feature distributions leads to significant advances on two fronts: (1) it enables highly sensitive detection of a wide range of anomalies, augmenting detections by volume-based methods, and (2) it enables automatic classification of anomalies via unsupervised learning. We show that using feature distributions, anomalies naturally fall into distinct and meaningful clusters. These clusters can be used to automatically classify anomalies and to uncover new anomaly types. We validate our claims on data from two backbone networks (Abilene and Geant) and conclude that feature distributions show promise as a key element of a fairly general network anomaly diagnosis framework.
Resumo:
It is well documented that the presence of even a few air bubbles in water can signifi- cantly alter the propagation and scattering of sound. Air bubbles are both naturally and artificially generated in all marine environments, especially near the sea surface. The abil- ity to measure the acoustic propagation parameters of bubbly liquids in situ has long been a goal of the underwater acoustics community. One promising solution is a submersible, thick-walled, liquid-filled impedance tube. Recent water-filled impedance tube work was successful at characterizing low void fraction bubbly liquids in the laboratory [1]. This work details the modifications made to the existing impedance tube design to allow for submersed deployment in a controlled environment, such as a large tank or a test pond. As well as being submersible, the useable frequency range of the device is increased from 5 - 9 kHz to 1 - 16 kHz and it does not require any form of calibration. The opening of the new impedance tube is fitted with a large stainless steel flange to better define the boundary condition on the plane of the tube opening. The new device was validated against the classic theoretical result for the complex reflection coefficient of a tube opening fitted with an infinite flange. The complex reflection coefficient was then measured with a bubbly liquid (order 250 micron radius and 0.1 - 0.5 % void fraction) outside the tube opening. Results from the bubbly liquid experiments were inconsistent with flanged tube theory using current bubbly liquid models. The results were more closely matched to unflanged tube theory, suggesting that the high attenuation and phase speeds in the bubbly liquid made the tube opening appear as if it were radiating into free space.
Resumo:
Accurate knowledge of traffic demands in a communication network enables or enhances a variety of traffic engineering and network management tasks of paramount importance for operational networks. Directly measuring a complete set of these demands is prohibitively expensive because of the huge amounts of data that must be collected and the performance impact that such measurements would impose on the regular behavior of the network. As a consequence, we must rely on statistical techniques to produce estimates of actual traffic demands from partial information. The performance of such techniques is however limited due to their reliance on limited information and the high amount of computations they incur, which limits their convergence behavior. In this paper we study strategies to improve the convergence of a powerful statistical technique based on an Expectation-Maximization iterative algorithm. First we analyze modeling approaches to generating starting points. We call these starting points informed priors since they are obtained using actual network information such as packet traces and SNMP link counts. Second we provide a very fast variant of the EM algorithm which extends its computation range, increasing its accuracy and decreasing its dependence on the quality of the starting point. Finally, we study the convergence characteristics of our EM algorithm and compare it against a recently proposed Weighted Least Squares approach.
Resumo:
Network traffic arises from the superposition of Origin-Destination (OD) flows. Hence, a thorough understanding of OD flows is essential for modeling network traffic, and for addressing a wide variety of problems including traffic engineering, traffic matrix estimation, capacity planning, forecasting and anomaly detection. However, to date, OD flows have not been closely studied, and there is very little known about their properties. We present the first analysis of complete sets of OD flow timeseries, taken from two different backbone networks (Abilene and Sprint-Europe). Using Principal Component Analysis (PCA), we find that the set of OD flows has small intrinsic dimension. In fact, even in a network with over a hundred OD flows, these flows can be accurately modeled in time using a small number (10 or less) of independent components or dimensions. We also show how to use PCA to systematically decompose the structure of OD flow timeseries into three main constituents: common periodic trends, short-lived bursts, and noise. We provide insight into how the various constituents contribute to the overall structure of OD flows and explore the extent to which this decomposition varies over time.
Resumo:
Internet Traffic Managers (ITMs) are special machines placed at strategic places in the Internet. itmBench is an interface that allows users (e.g. network managers, service providers, or experimental researchers) to register different traffic control functionalities to run on one ITM or an overlay of ITMs. Thus itmBench offers a tool that is extensible and powerful yet easy to maintain. ITM traffic control applications could be developed either using a kernel API so they run in kernel space, or using a user-space API so they run in user space. We demonstrate the flexibility of itmBench by showing the implementation of both a kernel module that provides a differentiated network service, and a user-space module that provides an overlay routing service. Our itmBench Linux-based prototype is free software and can be obtained from http://www.cs.bu.edu/groups/itm/.
Resumo:
Anomalies are unusual and significant changes in a network's traffic levels, which can often involve multiple links. Diagnosing anomalies is critical for both network operators and end users. It is a difficult problem because one must extract and interpret anomalous patterns from large amounts of high-dimensional, noisy data. In this paper we propose a general method to diagnose anomalies. This method is based on a separation of the high-dimensional space occupied by a set of network traffic measurements into disjoint subspaces corresponding to normal and anomalous network conditions. We show that this separation can be performed effectively using Principal Component Analysis. Using only simple traffic measurements from links, we study volume anomalies and show that the method can: (1) accurately detect when a volume anomaly is occurring; (2) correctly identify the underlying origin-destination (OD) flow which is the source of the anomaly; and (3) accurately estimate the amount of traffic involved in the anomalous OD flow. We evaluate the method's ability to diagnose (i.e., detect, identify, and quantify) both existing and synthetically injected volume anomalies in real traffic from two backbone networks. Our method consistently diagnoses the largest volume anomalies, and does so with a very low false alarm rate.
Resumo:
Accurate knowledge of traffic demands in a communication network enables or enhances a variety of traffic engineering and network management tasks of paramount importance for operational networks. Directly measuring a complete set of these demands is prohibitively expensive because of the huge amounts of data that must be collected and the performance impact that such measurements would impose on the regular behavior of the network. As a consequence, we must rely on statistical techniques to produce estimates of actual traffic demands from partial information. The performance of such techniques is however limited due to their reliance on limited information and the high amount of computations they incur, which limits their convergence behavior. In this paper we study a two-step approach for inferring network traffic demands. First we elaborate and evaluate a modeling approach for generating good starting points to be fed to iterative statistical inference techniques. We call these starting points informed priors since they are obtained using actual network information such as packet traces and SNMP link counts. Second we provide a very fast variant of the EM algorithm which extends its computation range, increasing its accuracy and decreasing its dependence on the quality of the starting point. Finally, we evaluate and compare alternative mechanisms for generating starting points and the convergence characteristics of our EM algorithm against a recently proposed Weighted Least Squares approach.
Resumo:
BoostMap is a recently proposed method for efficient approximate nearest neighbor retrieval in arbitrary non-Euclidean spaces with computationally expensive and possibly non-metric distance measures. Database and query objects are embedded into a Euclidean space, in which similarities can be rapidly measured using a weighted Manhattan distance. The key idea is formulating embedding construction as a machine learning task, where AdaBoost is used to combine simple, 1D embeddings into a multidimensional embedding that preserves a large amount of the proximity structure of the original space. This paper demonstrates that, using the machine learning formulation of BoostMap, we can optimize embeddings for indexing and classification, in ways that are not possible with existing alternatives for constructive embeddings, and without additional costs in retrieval time. First, we show how to construct embeddings that are query-sensitive, in the sense that they yield a different distance measure for different queries, so as to improve nearest neighbor retrieval accuracy for each query. Second, we show how to optimize embeddings for nearest neighbor classification tasks, by tuning them to approximate a parameter space distance measure, instead of the original feature-based distance measure.
Resumo:
Detecting and understanding anomalies in IP networks is an open and ill-defined problem. Toward this end, we have recently proposed the subspace method for anomaly diagnosis. In this paper we present the first large-scale exploration of the power of the subspace method when applied to flow traffic. An important aspect of this approach is that it fuses information from flow measurements taken throughout a network. We apply the subspace method to three different types of sampled flow traffic in a large academic network: multivariate timeseries of byte counts, packet counts, and IP-flow counts. We show that each traffic type brings into focus a different set of anomalies via the subspace method. We illustrate and classify the set of anomalies detected. We find that almost all of the anomalies detected represent events of interest to network operators. Furthermore, the anomalies span a remarkably wide spectrum of event types, including denial of service attacks (single-source and distributed), flash crowds, port scanning, downstream traffic engineering, high-rate flows, worm propagation, and network outage.
Resumo:
Recently the notion of self-similarity has been shown to apply to wide-area and local-area network traffic. In this paper we examine the mechanisms that give rise to self-similar network traffic. We present an explanation for traffic self-similarity by using a particular subset of wide area traffic: traffic due to the World Wide Web (WWW). Using an extensive set of traces of actual user executions of NCSA Mosaic, reflecting over half a million requests for WWW documents, we show evidence that WWW traffic is self-similar. Then we show that the self-similarity in such traffic can be explained based on the underlying distributions of WWW document sizes, the effects of caching and user preference in file transfer, the effect of user "think time", and the superimposition of many such transfers in a local area network. To do this we rely on empirically measured distributions both from our traces and from data independently collected at over thirty WWW sites.
Resumo:
Recent measurements of local-area and wide-area traffic have shown that network traffic exhibits variability at a wide range of scales self-similarity. In this paper, we examine a mechanism that gives rise to self-similar network traffic and present some of its performance implications. The mechanism we study is the transfer of files or messages whose size is drawn from a heavy-tailed distribution. We examine its effects through detailed transport-level simulations of multiple TCP streams in an internetwork. First, we show that in a "realistic" client/server network environment i.e., one with bounded resources and coupling among traffic sources competing for resources the degree to which file sizes are heavy-tailed can directly determine the degree of traffic self-similarity at the link level. We show that this causal relationship is not significantly affected by changes in network resources (bottleneck bandwidth and buffer capacity), network topology, the influence of cross-traffic, or the distribution of interarrival times. Second, we show that properties of the transport layer play an important role in preserving and modulating this relationship. In particular, the reliable transmission and flow control mechanisms of TCP (Reno, Tahoe, or Vegas) serve to maintain the long-range dependency structure induced by heavy-tailed file size distributions. In contrast, if a non-flow-controlled and unreliable (UDP-based) transport protocol is used, the resulting traffic shows little self-similar characteristics: although still bursty at short time scales, it has little long-range dependence. If flow-controlled, unreliable transport is employed, the degree of traffic self-similarity is positively correlated with the degree of throttling at the source. Third, in exploring the relationship between file sizes, transport protocols, and self-similarity, we are also able to show some of the performance implications of self-similarity. We present data on the relationship between traffic self-similarity and network performance as captured by performance measures including packet loss rate, retransmission rate, and queueing delay. Increased self-similarity, as expected, results in degradation of performance. Queueing delay, in particular, exhibits a drastic increase with increasing self-similarity. Throughput-related measures such as packet loss and retransmission rate, however, increase only gradually with increasing traffic self-similarity as long as reliable, flow-controlled transport protocol is used.
Resumo:
In our previous work, we developed TRAFFIC(X), a specification language for modeling bi-directional network flows featuring a type system with constrained polymorphism. In this paper, we present two ways to customize the constraint system: (1) when using linear inequality constraints for the constraint system, TRAFFIC(X) can describe flows with numeric properties such as MTU (maximum transmission unit), RTT (round trip time), traversal order, and bandwidth allocation over parallel paths; (2) when using Boolean predicate constraints for the constraint system, TRAFFIC(X) can describe routing policies of an IP network. These examples illustrate how to use the customized type system.
Resumo:
An appearance-based framework for 3D hand shape classification and simultaneous camera viewpoint estimation is presented. Given an input image of a segmented hand, the most similar matches from a large database of synthetic hand images are retrieved. The ground truth labels of those matches, containing hand shape and camera viewpoint information, are returned by the system as estimates for the input image. Database retrieval is done hierarchically, by first quickly rejecting the vast majority of all database views, and then ranking the remaining candidates in order of similarity to the input. Four different similarity measures are employed, based on edge location, edge orientation, finger location and geometric moments.
Resumo:
Internet measurements show that the size distribution of Web-based transactions is usually very skewed; a few large requests constitute most of the total traffic. Motivated by the advantages of scheduling algorithms which favor short jobs, we propose to perform differentiated control over Web-based transactions to give preferential service to short web requests. The control is realized through service semantics provided by Internet Traffic Managers, a Diffserv-like architecture. To evaluate the performance of such a control system, it is necessary to have a fast but accurate analytical method. To this end, we model the Internet as a time-shared system and propose a numerical approach which utilizes Kleinrock's conservation law to solve the model. The numerical results are shown to match well those obtained by packet-level simulation, which runs orders of magnitude slower than our numerical method.
Resumo:
A number of problems in network operations and engineering call for new methods of traffic analysis. While most existing traffic analysis methods are fundamentally temporal, there is a clear need for the analysis of traffic across multiple network links — that is, for spatial traffic analysis. In this paper we give examples of problems that can be addressed via spatial traffic analysis. We then propose a formal approach to spatial traffic analysis based on the wavelet transform. Our approach (graph wavelets) generalizes the traditional wavelet transform so that it can be applied to data elements connected via an arbitrary graph topology. We explore the necessary and desirable properties of this approach and consider some of its possible realizations. We then apply graph wavelets to measurements from an operating network. Our results show that graph wavelets are very useful for our motivating problems; for example, they can be used to form highly summarized views of an entire network's traffic load, to gain insight into a network's global traffic response to a link failure, and to localize the extent of a failure event within the network.