3 resultados para time interval
em Boston University Digital Common
Resumo:
We study the impact of heterogeneity of nodes, in terms of their energy, in wireless sensor networks that are hierarchically clustered. In these networks some of the nodes become cluster heads, aggregate the data of their cluster members and transmit it to the sink. We assume that a percentage of the population of sensor nodes is equipped with additional energy resources-this is a source of heterogeneity which may result from the initial setting or as the operation of the network evolves. We also assume that the sensors are randomly (uniformly) distributed and are not mobile, the coordinates of the sink and the dimensions of the sensor field are known. We show that the behavior of such sensor networks becomes very unstable once the first node dies, especially in the presence of node heterogeneity. Classical clustering protocols assume that all the nodes are equipped with the same amount of energy and as a result, they can not take full advantage of the presence of node heterogeneity. We propose SEP, a heterogeneous-aware protocol to prolong the time interval before the death of the first node (we refer to as stability period), which is crucial for many applications where the feedback from the sensor network must be reliable. SEP is based on weighted election probabilities of each node to become cluster head according to the remaining energy in each node. We show by simulation that SEP always prolongs the stability period compared to (and that the average throughput is greater than) the one obtained using current clustering protocols. We conclude by studying the sensitivity of our SEP protocol to heterogeneity parameters capturing energy imbalance in the network. We found that SEP yields longer stability region for higher values of extra energy brought by more powerful nodes.
Resumo:
The problem of discovering frequent arrangements of temporal intervals is studied. It is assumed that the database consists of sequences of events, where an event occurs during a time-interval. The goal is to mine temporal arrangements of event intervals that appear frequently in the database. The motivation of this work is the observation that in practice most events are not instantaneous but occur over a period of time and different events may occur concurrently. Thus, there are many practical applications that require mining such temporal correlations between intervals including the linguistic analysis of annotated data from American Sign Language as well as network and biological data. Two efficient methods to find frequent arrangements of temporal intervals are described; the first one is tree-based and uses depth first search to mine the set of frequent arrangements, whereas the second one is prefix-based. The above methods apply efficient pruning techniques that include a set of constraints consisting of regular expressions and gap constraints that add user-controlled focus into the mining process. Moreover, based on the extracted patterns a standard method for mining association rules is employed that applies different interestingness measures to evaluate the significance of the discovered patterns and rules. The performance of the proposed algorithms is evaluated and compared with other approaches on real (American Sign Language annotations and network data) and large synthetic datasets.
Resumo:
Genetic Algorithms (GAs) make use of an internal representation of a given system in order to perform optimization functions. The actual structural layout of this representation, called a genome, has a crucial impact on the outcome of the optimization process. The purpose of this paper is to study the effects of different internal representations in a GA, which generates neural networks. A second GA was used to optimize the genome structure. This structure produces an optimized system within a shorter time interval.